Antibiotic and heavy metal resistance profiles in potentially pathogenic Pseudomonas aeruginosa isolated from agricultural water usage

Oscar Giovanni Gutiérrez Cárdenas, Luis Fernando Navarro Ibarra, Pedro Damián Loeza Lara, Oscar Guadalupe Del Río Rodríguez, Rafael Jiménez Mejía


Seventy percent of water is used in agricultural activities worldwide. However, due to the uncontrolled growth of the population and the contamination of superficial fresh water bodies the water scarcity has augmented, for this the availability of good quality water for agriculture is limited. One of the main pollutants is antibiotic resistant and potentially pathogenic bacteria. P. aeruginosa is a bacterium that normally is found in water and soil, it is pathogen from animals and plants. This bacterium has been considered a resistance phenomenon due to the diversity of mechanisms that contain which represent a potential risk to the population.

Method: Samples of agricultural usage water were collected, of which P. aeruginosa was isolates and identified at the biochemical and molecular level. Also, the distribution of virulence genes was analyzed by PCR. The resistance to 20 antibiotics was tested by disk diffusion and microdilution assays. Even more, heavy metal resistance was analyzed by microdilution assays.

Results: Forty-six P. aeruginosa were identified at molecular and biochemical level, the bacteria were potentially pathogenic because the following virulence genes was detected, algD and toxA in100% of bacteria, lasB in 97.8%, plcH in 95.6%, plcN in 91,3% and exoS in 89.1%. High rates of resistance were detected in bacterial isolates for ampicillin, ceftriaxone, chlroramphenicol, cephalotin, cefotaxime, nitrofurantoin, kanamycin, streptomycin and tetracycline. Similarly, susceptibility was detected mainly to ceftazidime, gentamycin, imipenem, tecarcillin, aztreonam, levofloxacin, netilmicin and carbenicillin. All bacteria were multirresistant as they tolerate between 8 and 11 antibiotics. According to the observed resistance patterns bacteria were classified in 11 groups. Whereas, metal tolerance was observed mainly for Cu+2, Zn+2, Ba+2, Pb+2 y Se+4.

Conclusion: P. aeruginosa isolated from agricultural usage water samples in the studied zone are potentially pathogenic due to the presence of virulence genes. Even more, high rates of antibiotic and heavy metal resistance were observed. 


P. eruginosa; virulence; antibiotic resistance; metal resistance


Baker-Austin, C., Wright, M. S., Stepanauskas, R., McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182.

Benami, M., Gross, A., Herzberg, M., Orlofsky, E., Vonshak, A., Gillor, O. (2013). Assess-ment of pathogenic bacteria in treated graywater and irrigated soils. Science of the Total Envi-ronment, 458, 298-302.

Broszat, M., Nacke, H., Blasi, R., Siebe, C., Huebner, J., Daniel, R., Grohmann, E. (2014). Wastewater irrigation increases the abundance of potentially harmful Gammaproteobacteria in soils in Mezquital Valley, Mexico. Applied and Environmental Microbiology, 80(17), 5282-5291.

CLSI, Clinical and Laboratory Standards Institute, 2012: M2-A11: Performance Standards for Antimicrobial Disk Susceptibility Test: Approved Standard- Eleventh Edition. Clinical Laboratory Standards Institute, Wayne, PA.

Equihua-Pimentel JL, Velázquez-Machuca MA, Sánchez-Rodríguez M, Seefoó-Luján JL. Gestión y calidad del agua en la cuenca del río Duero, Michoacán. En: Spring OU. Coordina-dora. Retos de la investigación del agua en México. Cuernavaca, México, CRIM-UNAM. 2011. p. 521-530.

Faraji, F., Mahzounieh, M., Ebrahimi, A., Fallah, F., Teymournejad, O., Lajevardi, B. (2016). Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microbial Pathogenesis, 99, 1-4.

Gatica, J., Cytryn, E. (2013). Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environmental Science and Pollution Research, 20(6), 3529-3538.

Ensink, J. H., Van Der Hoek, W., Matsuno, Y., Munir, S., Aslam, M. R. (2002). Use of un-treated wastewater in peri-urban agriculture in Pakistan: Risks and opportunities. International Water Management Institute, 64, 1-22.

Kümmerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemothera-py, 54(2), 311-320.

López-Hernández M, Ramos-Espinosa MG, Carranza-Fraser J. (2007). Análisis multimétrico para evaluar contaminación en el río Lerma y lago de Chapala, México. Hidrobiológica, 7:17-30.

Lutz, J. K., Lee, J. (2011). Prevalence and antimicrobial-resistance of Pseudomonas aeru-ginosa in swimming pools and hot tubs. International Journal of Environmental Research and Public Health, 8(2), 554-564.

MacFaddin JF. Pruebas bioquímicas para la identificación de bacterias de importancia clínica, 3ª edición, Montevideo, Uruguay, Panamericana, 2000.

Mena, K. D., Gerba, C. P. (2009). Risk assessment of Pseudomonas aeruginosa in water. In Reviews of Environmental Contamination and Toxicology, 201, 71-115.

Odjadjare, E. E., Igbinosa, E. O., Mordi, R., Igere, B., Igeleke, C. L., Okoh, A. I. (2012). Pre-valence of multiple antibiotics resistant (MAR) Pseudomonas species in the final effluents of three municipal wastewater treatment facilities in South Africa. International Journal of Envi-ronmental Research and Public Health, 9(6), 2092-2107.

Pirnay, J. P., De Vos, D., Cochez, C., Bilocq, F., Vanderkelen, A., Zizi, M., Ghysels, B., Cor-nelis, P. (2002). Pseudomonas aeruginosa displays an epidemic population struc-ture. Environmental Microbiology, 4(12), 898-911.

Pitondo‐Silva, A., Gonçalves, G. B., Stehling, E. G. (2016). Heavy metal resistance and viru-lence profile in Pseudomonas aeruginosa isolated from Brazilian soils. APMIS, 124(8), 681-688.

Salazar, D., Hernández, Y., Palma, S., González, A., Reyes, T. (2001). Actividad antimicro-biana de doce fármacos frente a cepas de Pseudomona aeruginosa de origen clíni-co. Bioquimia, 26(4), 79-84.

Sandoval-Moreno, A., & Ochoa-Ocaña, M. A. (2010). Grupos locales, acceso al agua y su problemática de contaminación en la ciénega de Chapala, Michoacán. Economía, Sociedad y Territorio, 10(34), 683-719.

Seiler, C., Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiolo-gy, 3:399.

Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B., Jackson, R. W. (2011). Pseudomo-nas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652-680.

Spilker, T., Coenye, T., Vandamme, P., LiPuma, J. J. (2004). PCR-based assay for differentia-tion of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fi-brosis patients. Journal of Clinical Microbiology, 42(5), 2074-2079.

Strateva, T., Yordanov, D. (2009). Pseudomonas aeruginosa–a phenomenon of bacterial re-sistance. Journal of Medical Microbiology, 58(9), 1133-1148.

Wu, Q., Ye, Y., Li, F., Zhang, J., Guo, W. (2016). Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China. LWT-Food Science and Technology, 69, 24-31.

Zhang, XX, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 2009; 82:397–414.



  • There are currently no refbacks.

Copyright (c) 2017 Nova Scientia

Nova Scientia, year 9, issue 19, November 2017 – April 2018, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 7108500, e-mail: Chief editor: Ph.D. Rolando Pérez Álvarez and Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on Nov 2th, 2017.