Yield forecast of forage oat due to climate change in the northwest of Chihuahua, Mexico

Daniel Villazón Bustillos, Héctor Osbaldo Rubio Arias, Jesús Manuel Ochoa Rivero, Celia De la Mora


Climate change can affect crop productivity in a particular region. The objective was to identify the variability in the production of dryland forage oat (Avena sativa L.) using a stochastic function and analyze their relationship with temperature and precipitation as affected by sceneries of climate change in the northwestern region of Chihuahua, Mexico. It was obtained 13 years of statistical information (2001-2013) at meteorological stations in the municipalities of Bachiniva and Namiquipa, using information on July, August and September months, where it is concentrated about 80% of annual precipitation. Information was taken from HADCM3 (2001) model that describes the behavior of climatic variables under pollutant emission scenarios A2 and B2 on the years 2050 and 2080. The changes in climate variables in the short term (2050) was taken and it is expected to increase both in temperature and precipitation, allowing in the case of Bachiniva improve the production of oats from 3.57 t/ha to 8.11 t/ha under pollutant emission scenario A2. In the long term (2080) a permanent increase in temperature is expected, and no matter how much precipitation improve, this will cause in the current oat producing regions fail to develop crops for harvest.


stochastic function; Avena sativa L.; dry matter production


ACIA, 2004. Arctic Climate Impact Assessment. Impacts of a warming arctic assessment. Author; Susan Joy Hassol. Cambridge University Press. ¿páginas?

Birthal, P.S., Digvijay, N., Shiv, K., Shaily, A., Suresh, Md K. 2014. How sensitive Is Indian Agriculture to Climate Change? Indian Journal of Agricultural Economics. Indian So-ciety of Agricultural Economics. 2014. Retrieved August 11, 2015 from HighBeam Research: http://www.highbeam.com/doc/1P3-3650930591.html.

Challinor, A., Wheeler, T., Craufurd, P., Slingo, J. 2005. Simulation of the impact of high temperature stress on annual crop yield. Agricultural and Forest Meteorology 135:180-189

CNA, 2014. Comisión Nacional de Agua. 2014. Red de estaciones climatológicas http://smn.conagua.gob.mx/tulls/RESOURCES/estadística.pdf.

Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Sepcial report of the intergovern-mental panel on climate change. Cambridge University Press 306-307 p.

García, E. 1988. Modificaciones al sistema de clasificación climática de Köppen (para adap-tarlo a las condiciones de la República Mexicana). Offset Larios S.A. México D.F. p. 46-52.

Griffiths, W. E., Anderson, J. R. 1982. Using time-series and cross-section data to estimate a production function with positive and negative marginal risks. Journal of the American Statistical Association. 77(379):529-536.

Hallam, A., Hassan, R. M., D'silva, B. 1989. Measuring Stochastic Technology for the Mul-ti‐product Firm: The Irrigated Farms of Sudan. Canadian Journal of Agricultural Eco-nomics/Revue canadienne d'agroeconomie. 37(3):495-512.

Harvey, A. C. 1976. Estimating regression models with multiplicative heteroscedasticity. Econometrica: Journal of the Econometric Society, 44(3)::461-465.

Hejnak, V., Skalicky, M., Hnilicka, F., Novak, J. 2009. Responses of cereal plants to envi-ronmental and climate changes-A review. En: Climate Change, Intercropping, Pest Control, and Beneficial Microorganisms. Sustainable Agriculture Review 2. Editor E. Lichtfouse. DOI:10.1007/978-90-481-2716-0.

Higashino, M., Stefan, H.G. 2014. Hydro-climatic change in Japan (1906-2005): Impacts of global warming and urbanization. Air, Soil and Water Research 2014:7 19-34. doi.10.4137/ASWR.S13632

Hurd, B. H. 1994. Yield response and production risk: An analysis of integrated pest man-agement in cotton. Journal of Agricultural and Resource Economics: 19(2)::313-326.

INEGI, 2010a. Prontuario de información geográfica municipal de los Estados Unidos Mexi-canos. Bachíniva, Chihuahua. Clave geoestadística 08006. Disponible en: http://www3.inegi.org.mx/sistemas/mexicocifras/datos-geograficos/08/08006.pdf. Consultado 15 de noviembre de 2014.

INEGI, 2010b. Prontuario de información geográfica municipal de los Estados Unidos Mexi-canos. Namiquipa, Chihuahua. Clave geoestadística 08048. Disponible en: http://www3.inegi.org.mx/sistemas/mexicocifras/datos-geograficos/08/08048.pdf. Consultado 15 de noviembre de 2014.

IPCC, 2014. Climate Change; Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment report of the Intergovernmental Panel on Climate Change. Editors; R.K. Pachauri and L.A. Meyer. Geneva, Swizerland, 151 p.

Just, R. E., Pope, R. D. 1978. Stochastic specification of production functions and economic implications. Journal of Econometrics. 7(1):67-86.

Kovats, R.S., Haines, A., Stanwell-Smith, R., Martens, P., Menne, B., Bertollini, R. 1999. Climate change and human health in Europe. BMJ 318. doi.http://dx.doi.org/10.1136/bmj.318.7199.1682

Malyshev, S., Shevliakova, E., Stouffer, R., Pacala, S. 2015. Contrasting Local versus Re-gional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model." Journal of Climate. American Meteor-ological Society. 2015. Retrieved August 11, 2015 from HighBeam Research: http://www.highbeam.com/doc/1P3-3739561411.html

McMichael, A. J., Woodruff, R. E., Hales, S. 2006. Climate change and human health: present and future risks. The Lancet, 367(9513):859-869.

Medina-García, G., Ruiz-Corral, J.A., Ramírez-Legarreta, M. Díaz, G. 2011. Efecto del cam-bio climático en la acumulación de frío en la región manzanera de Chihuahua. Revista Mexicana de Ciencias Agrícolas, 2:195-207

Mendelsohn, R., Dinar, A., Williams, L. 2006. The distributional impact of climate change on rich and poor countries. Environment and Development Economics, 11(02):159-178.

Parmesan, C., Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918):37-42.

Parry, M. L., Ruttan, V. W. 1991. Climate change and world agriculture. Environment: Scien-ce and Policy for Sustainable Development, 33(6):25-29.

Rafael, S. R., Carlos, D. C. J., Andres, R., Javier, O. S. V. 2012. Monitoreo de la sequía 2011-2012, en la RH10-OCPN. Congreso nacional de hidráulica Acapulco Guerrero, Méxi-co. 22:1-8.

Ridout M, Demetrio, C.G.B., Hinde, J. 1998 Models for count data with many zeros. Proc. XIX Inter. Biometric Conf. 9: 179–192. Capetown, Southafrica.

SAS, 2004. Programa computacional implementado para desarrollar análisis estadísticos avanzados. SAS Institute. Cary, North Carolina, United States of America.

Seager, R.M.T. 2009. Mexican drought: an observational modeling and tree ring study of var-iability and climate change. Atmósfera 22(1):1-31.

SIAP, 2014. Servicio de Información Agroalimentaria y Pesquera. 2014. Atlas Agroalimenta-rio. 1era Edición. México, DF. 193 p.

Sosa-Rodríguez, F.S. (2015). Política del cambio climático en México: avances, obstáculos y retos. Revista Realidad, Datos y Espacio. Revista Internacional de Estadística y Geo-grafía, 6(2):4-23.

Stanhill, G, Cohen, S. 2001. Global dimming: A review of the evidence for widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 107: 255–278.

Traxler, G., Falck-Zepeda, J., Ortiz-Monasterio, R., Sayre, K. 1995. Production risk and the evolution of varietal technology. American Journal of Agricultural Economics: 1-7.

Vardoulakis, S., Dear, K., Hajat, S., Heaviside, C., Eggen, B., McMichael, A. 2014 Compara-tive Assessment of the Effects of Climate Change on Heat- and Cold-Related Mortali-ty in the United Kingdom and Australia." Environmental Health Perspectives. National Institute of Environmental Health Sciences. 2014. Retrieved August 11, 2015 from HighBeam Research: http://www.highbeam.com/doc/1G1-398253365.html

Villaseñor, M.H., Espitia, R.E., Huerta, E.J., Osorio, A.L., López, H.J. 2009. Turquesa, Nueva Variedad de Avena para la Producción de Grano y Forraje en México. Agricultura Técnica en México 35 (4) 487-492

Wan, G. H., Griffiths, W. E., Anderson, J. R. 1992. Using panel data to estimate risk effects in seemingly unrelated production functions. Empirical Economics, 17(1):35-49.

Wiebelt, M., Al-Riffai, P., Breisinger, C., Robertson, R. 2015. Who Bears the Costs of Cli-mate Change? Evidence from Tunisia." The Journal of Developing Areas. Journal of Developing Areas College of Business, Tennessee State University. 2015. Retrieved August 11, 2015 from HighBeam Research: http://www.highbeam.com/doc/1P3-3486135281.html

Wild, M., Grieser, J., Schär, C. 2008 Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. 35:1-5.

Wolf, J., Kanellopoulos, A., Kros, J., Webber, H., Zhao, G., Brits, W., Jan Reinds, G., Ewert, F., de Vries, W. 2015. Combined analysis of climate, technological and price changes on future arable farming systems in Europe. 2015. Agricultural Systems 140:56-73

DOI: https://doi.org/10.21640/ns.v9i19.953


  • There are currently no refbacks.

Copyright (c) 2017 Nova Scientia

Nova Scientia, year 9, issue 19, November 2017 – April 2018, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 7108500, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Rolando Pérez Álvarez and Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on Nov 2th, 2017.