Modeling and control of a magnetic levitation system based on active magnetic bearing

Marlon Cruz-Pegueros, Oscar Octavio Gutiérrez Frías, Norma Beatriz Lozada-Castillo, Alberto Luviano- Juárez


In this paper, we present the design, modeling as well as the implementation of a magnetic levitation system, consisting on a single-degree of freedom pendular beam, which is driven by means of an active magnetic bearing. The analysis includes the state space representation and, after a tangent linearization process, its transfer function is obtained. In addition, the characteristics of the device such as the electronic instrumentation and mechanical design are described. In particular, it is shown the design procedure of the electromagnetic actuator used, as well as its characterization to determine the proportional constant of the electromagnetic force with respect to a current input. Finally, some numerical simulations and experimental results of the implementation of some classic controllers in stabilization task are shown. 


Active magnetic bearing; linear control; electromagnetic force; test bed


Arredondo, I., Jugo, J., & Etxebarria, V. (2008). Modeling and control of a flexible rotor sys-tem with AMB-based sustentation. ISA transactions, 47(1), 101-112.

Bächle, T., Hentzelt, S., & Graichen, K. (2013). Nonlinear model predictive control of a mag-netic levitation system. Control Engineering Practice, 21(9), 1250-1258.

Beltran-Carbajal, F., Valderrabano-Gonzalez, A., Rosas-Caro, J. C., & Favela-Contreras, A. (2015). Output feedback control of a mechanical system using magnetic levitation. ISA trans-actions, 57, 352-359.

Chen, S. L., & Weng, C. C. (2010). Robust control of a voltage-controlled three-pole active magnetic bearing system. IEEE/ASME Transactions on Mechatronics, 15(3), 381-388.

Du, H., Zhang, N., Ji, J. C., & Gao, W. (2010). Robust fuzzy control of an active magnetic bearing subject to voltage saturation. IEEE transactions on control systems technology, 18(1), 164-169.

Golob, M., & Tovornik, B. (2003). Modeling and control of the magnetic suspension sys-tem. ISA transactions, 42(1), 89-100.

Kim, W. J., Verma, S., & Shakir, H. (2007). Design and precision construction of novel mag-netic-levitation-based multi-axis nanoscale positioning systems. Precision Engineering, 31(4), 337-350.

Kimman, M. H., Langen, H. H., & Schmidt, R. M. (2010). A miniature milling spindle with active magnetic bearings. Mechatronics, 20(2), 224-235.

Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transac-tions on Robotics, 26(6), 1006-1017.

Hasirci, U., Balikci, A., Zabar, Z., & Birenbaum, L. (2011). A novel magnetic-levitation sys-tem: design, implementation, and nonlinear control. IEEE Transactions on Plasma Sci-ence, 39(1), 492-497.

Hu, T., Lin, Z., Jiang, W., & Allaire, P. E. (2005). Constrained control design for magnetic bearing systems. Journal of dynamic systems, measurement, and control, 127(4), 601-616.

Lindlau, J. D., & Knospe, C. R. (2002). Feedback linearization of an active magnetic bearing with voltage control. IEEE Transactions on Control Systems Technology, 10(1), 21-31.

Lee, J. H., Allaire, P. E., Tao, G., Decker, J. A., & Zhang, X. (2003). Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension. IEEE Transactions on control systems technology, 11(1), 128-138.

Lee, H. W., Kim, K. C., & Lee, J. (2006). Review of maglev train technologies. IEEE transac-tions on magnetics, 42(7), 1917-1925.

Lei, S., & Palazzolo, A. (2008). Control of flexible rotor systems with active magnetic bear-ings. Journal of Sound and Vibration, 314(1), 19-38.

Mahindrakar, A. D., & Sankaranarayanan, V. (2008). State‐constrained stabilization of beam‐balance systems. International Journal of Robust and Nonlinear Control, 18(3), 333-350.

Mahindrakar, A., & Sankaranarayanan, V. (2007). Nonlinear control of a beam-balance system with a single electromagnet. In Proceedings of the International Conference on Advances in Control and Optimization of Dynamical Systems ACODS (pp. 340-343).

Peijnenburg, A. T. A., Vermeulen, J. P. M., & Van Eijk, J. (2006). Magnetic levitation systems compared to conventional bearing systems. Microelectronic engineering, 83(4), 1372-1375.

Qin, Y., Peng, H., Ruan, W., Wu, J., & Gao, J. (2014). A modeling and control approach to magnetic levitation system based on state-dependent ARX model. Journal of Process Con-trol, 24(1), 93-112.

Rajeshkanna, G. (2012). Design, development and testing of an electromagnet for industrial waste metal scraps cleaning. International Journal of Electrical Engineering & Technology (IJEET), 3(3), 1-7.

Rodriguez, H., Ortega, R., & Mareels, I. (2000). A novel passivity-based controller for an ac-tive magnetic bearing benchmark experiment. In American Control Conference, 2000. Pro-ceedings of the 2000 (Vol. 3, pp. 2144-2148). IEEE.

Sira-Ramírez, H., Marquez, R., Rivas-Echeverria, F., & Llanes-Santiago, O. (2005). Control de Sistemas no lineales. Perason Education.

Tsuda, M., Tamashiro, K., Sasaki, S., Yagai, T., Hamajima, T.,

Yamada, T., & Yasui, K. (2009). Vibration transmission characteristics against vertical vibration in magnetic levitation type HTS seismic/vibration isolation device. IEEE Transactions on Applied Superconductivi-ty, 19(3), 2249-2252.

Wai, R. J., Lee, J. D., & Chuang, K. L. (2011). Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Transactions on Industrial Elec-tronics, 58(2), 629-646.

Xie, Y. (2003). Mechatronics Examples for Teaching Modeling, Dynamics, and Control, Doc-toral dissertation, Massachusetts Institute of Technology.



  • There are currently no refbacks.

Copyright (c) 2017 Nova Scientia


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.