Evaporation analysis and climate change in central México

Rafael Magallanes Quintanar, Aurelio Manuel López Hernández, Carlos Erick Galván-Tejada

Abstract


Long–term monthly pan evaporation time series registered at 35 meteorological stations located within Mexico’s state of Zacatecas were analyzed through linear regression approach in order to identify their trends and to calculate their anomalies. In addition, we analyzed the power spectrum signals of evaporation anomaly series through fractal analysis to identify their important frequencies and its possible connection with periodic phenomena. Results suggest that negative trends are prevailing over positive trends. We found negative linear trend for 21 out of 35 pan evaporation time series. 18 out of 21 decreasing trends were significant at p<0.05. On the other hand, 14 out of 35 pan evaporation trends were positive but only 8 of them at significant level (p<0.05). Moreover, the noise in these monthly pan evaporation series tends to be persistent behavior. Additionally, we found that important frequencies in our study seem that could be related with the yearly cycle, quasi–biannual cycle, ‘El Niño Southern Oscillation’ phenomena and sunspot cycle.


Keywords


Linear trends; Fractal dimension; Power spectrum density; ENSO; Sunspot cycle

References


Brutsaert, W., M. B. Parlange (1998), Hydrologic cycle explains the evaporation paradox, Nature, 396, 30.

Brutsaert W. (2006). Indications of increasing land surface evaporation during the second half of the 20th century. Geophys. Res. Lett. 33: L20403. doi:10.1029/2006GL027532.

Blanco-Macías, F., R. D. Valdez-Cepeda, R. Magallanes-Quintanar (2011). Pan evaporation analysis in central Mxico: Trends, self-affinity and important frequencies. International Journal of Physical Sciences, 6(3), 540-549.

Chattopadhyay N., M. Hulme (1997). Evaporation and potential evapotranspiration in India under conditions of recent and future climate. Agric. Forest Meteorol. 187: 55–73.

De la Fuente I.M., L. Martínez, J. M. Aguirregabiria, J. Veguillas, M. Iriarte M (1999). Long–range correlations in the phase–shifts of numerical simulations of biochemical oscillations in experimental cardiac rhytms. J. Biol. Systems 7:113–130.

Dimri, V. P. (2005). Fractals in geophysics and seismology: an introduction (pp. 1-22). Springer Berlin Heidelberg.

Evertsz C.J.G., K. Berkner. (1995). Large deviation and self–similarity analysis of curves: DAX stock prices. Chaos, Solitons & Fractals 6:121–130.

Gamma Design Software. (1999). GS+ Geostatistics for the Environmental Sciences. (Version 3.5). https://www.gammadesign.com/default.aspx

Gifford R.M., D. F. Graham, N. Neville, L. R. Michael. (2005). Workshop summary on pan evaporation: An example of the detection and attribution of climate change variables. In: Gifford R.M. (editor). Pan Evaporation: An Example of the Detection and Attribution of Trends in Climate Variables.

Hausdorff J.M., C–K Peng. (1996). Multiscaled randomness: A possible source of 1/f noise in biology. Phys. Rev. E 54: 2154–2157.

Huntington T.G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 319: 83–95.

Intergovernmental Panel on Climate Change (IPCC). (2015). Climate Change 2014, Synthesis Report. IPCC, 2014.

Johnson F., A. Sharma (2010). A Comparison of Australian Open Water Body Evaporation Trends for Current and Future Climates Estimated from Class A Evaporation Pans and General Circulation Models. J. Hidrometeorology 11:105–121.

Labitske K., H. van Loon. (1989). Associations between the 11–year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere in winter. J. Atmosph. & Solar–Terr. Phys. 50: 197–206.

Lawrimore J.H., T. C. Peterson. (2000). Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor. 1: 543–546.

Linacre E.T. (2004). Evaporation trends. Theor. Appl. Climatol. 79: 11–21.

MacMynowski D.G., E. Tziperman (2008). Factors affecting ENSO’s period. J. of the Atmospheric Sciences 65: 1570–1586.

Mandelbrot B.B. (1982). The Fractal Geometry of Nature. W.H. Freeman, New York.

Mendoza B., A. Lara, D. Maravilla, E. Jáuregui (2001). Temperature variability in central México and its posible association to solar activiy. J. Atmosph. and Solar–Terr. Phys. 63: 1891–1900.

Monetti R.A., S. Havlin, A. Bunde. (2003). Long–term persistence in sea–surface temperature fluctuations. Physica A. 320: 581–589.

Moreira J.G., L. D. S. J. Kamphorst, K. S. Oliffson. (1994). On the fractal dimension of self–affine profiles, J. Phys. A: Math. Gen. 27: 80.79–8089.

Muhlbauer, A., P. Spichtinger, P., U. Lohmann. (2009). Application and comparison of robust linear regression methods for trend estimation. Journal of Applied Meteorology and Climatology, 48(9), 1961-1970.

Mutziger A.J., C. M. Burt, D. J. Howes, R. G. Allen. (2005). Comparison of measured and FAO–56 modeled evaporation from bare soil, J. Irrigation and Drainage Engineering 131(1): 59–72.

Originlab (2007). Origin (Versión SR0 8). http://www.originlab.com/

Peng C–K, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger. (1994). Mosaic organization of DNA nucleotides. Phys. Rev. E 49: 685–1689.

Quintana–Gomez R.A. (1998). Changes in evaporation patterns detected in northernmost South America. Proc. 7th Int. Meeting on Statistical Climatology. Whistler, BC, Canada, Institute of Mathematical Statistics, p. 97.

Roderick M.L., G. D. Farquhar. (2004). Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol. 24: 1077–1090.

Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT) (2008). Volúmenes de recarga y extracción de acuíferos sobreexplotados. http://app1.semarnat.gob.mx/dgeia/cd_compendio08/compendio_2008/compendio2008/10.100.8.236_8080/archivos/03_Dimension_ambiental/01_Agua/D3_AGUA02_02.pdf. Downloaded 11th January, 2011.

Trömel, S., C. D. Schönwiese. (2008). Robust trend estimation of observed German precipitation. Theoretical and Applied Climatology, 93(1-2), 107-115.

Turcotte D.L. (1992). Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge.

TruSoft International Inc. (1999). Benoit Fractal Analysis System (Versión 1.3). http://trusoft-international.com/index.html

Valdez–Cepeda RD, D. Hernández–Ramírez, B. Mendoza, J. Valdés–Galicia, D. Maravilla. (2003a). Fractality of monthly extreme minimum temperature. Fractals 11: 137–144.

Valdez–Cepeda R.D., B. Mendoza, R. Díaz–Sandoval, J. Valdés–Galicia, J. D. López–Martínez, E. Martínez–Rubín de Celis. (2003b). Power–spectrum behavior of yearly mean grain yields. Fractals 11(3): 295–301.

Weber R. O., P. Talkner. (2001). Spectra and correlations of climate data from days to decades. J. Geophys. Res. D. 106: 20131–20144.

Wilks D. S. (2011). Statistical Methods in the Atmospheric science. Academic Press. ISBN 0–12–751965–3 (page 42).

Yunling, H., Z. Yiping. (2005). Climate change from 1960 to 2000 in the Lancang River Valley, China. Mountain Research and Development, 25(4), 341-348.

Zubair L. (2002). El Niño Southern Oscillation influences on rice production in Sri Lanka. Int. J. Climatol. 22: 249–260.




DOI: https://doi.org/10.21640/ns.v9i18.750

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Nova Scientia

Nova Scientia, year 9, issue 19, November 2017 – April 2018, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 7108500, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Rolando Pérez Álvarez and Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on Nov 2th, 2017.