Calculating energy balance for higuerilla (Ricinus communis L.) from field productive stages to energy value for whole plant constituents

Héctor Martín Durán García, Hipólito Ortiz Laurel, Erich Dietmar Rossel Kipping, Alejandro Amante Orozco, Liliana González Muñoz


Introduction:  Energy balance trial allows to carefully allocating any inputs for field production of the crop as well as, dosing precisely the amount of energy required for each process, thus determining the efficiency when energy transformation inside the crop is required for a certain task.                       

Method: Castor oil plant (Ricinus communis L.) as an energetic crop was field drillet and cultural practices were undertaken for crop growth and at harvest, the whole plant was collected where each constituent was tested for its energy concentration. Thus, to reach for an energy balance calculation; bilological energy figures from higuerilla plant were compared with technical and physical energy application for crop cultivation and processing.                       

Results: Entire energy applied for crop growth is 28% higher that energy obtained from higuerilla plant. Also, biomass of whole castor oil plant except seeds generates twice energy than oil from seeds, so whole crop harvesting has to be promoted.                       

Conclusion: Oil from sedes should de used as biomaterial, since there is a positive balance by 15%.


renewable energy; energetic potential; energy crop; biomass

Full Text:



Adilson Nunes da Silva, A., Libório Romanelli, and Reichardt, K. (2010). Energy flow in castor bean (Ricinus communis L.) production systems. Sci. Agric. 67(6): 737-742.

Amaya Ramirez B., Becerra Bayona S. y Acevedo Pabón P. (2008). Evaluación del análisis del ciclo de vida para la producción de biodiesel a partir de aceite de higuerilla empleando la metodología “de la cuna a la cuna”. Revista ION. 21(1): 17-26.

Borjesson P. (1996). Energy analysis of biomass production and transportation. Biomass and Bioenergy. 11: 305-318.

Chang j., Dennis Y., Leung C., Wu CZ. (2003). A review on the energy production, consuption and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews. 7: 453-468.

Delgado A., Aperador-Chaparro W. and Parra-Plazas J. (2013). Comparison of the behavior of biofuel base don castor and sunflower oils. TECCIENCIA. 7(14): 54-60.

Fuentes-Martínez E.F., Pérez-Murguía J. and Jiménez-Domínguez R.V. (2013). Energy balance of biodiesel for five sources recommended for México. Proceedings of the 4th International Congress on Alternative Energies. México city. P. 64-69.

Girard, P. and Fallot, A. (2006). Review of existing and emerging technologies for the production of biofuels in developing countries. Energy for Sustainable Development. X(2): 92-108.

González-Muñoz L. (2014). Determination of energy balance for castor oil plant cropping (Ricinus communis). Technical Report. Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hgo. S.L.P. México. 90p.

Hall DO. (1997). Biomass energy in industrialized counties: a view of the future. Forest Ecology and Management. 91: 17-45.

Kerstin, P. (2009). So viel brauch der mensch: Energiebedarf. Pharmazeutische Zeitung. 6: 36-37.

Lago, R.C.C. (2009). Castor and jatropha oils: production strategies – A review. OCL Journal. 16(4): 241-247.

Meier M.A.R., Metzger O., Schubert U.S. (2007). Plant oil renewable resources as green alternatives in polymer science. Chemical Society Review. 36: 1788-1802.

Ortíz Laurel H., Rossel Kipping D. and Schumann U. (2012). Potencial para el uso directo de los aceites vegetales en los motores de combustion (Feasability for direct usage of vegetable oils as fuel into internal combustion engines). Revista Mexicana de Ciencias Agrícolas. 4: 650-658.

Saribiyik, O.Y., Ozcanli, M., Serin, H., S. and Aydin, K. (2010). Biodiesel production from ricinus communis oil and its blends with soybean biodiesel. Journal of Mechanical Engineering. 56(12): 811-816.

Sepúlveda González I. (2012). Bioturbosina. Producción de cultivos energéticos para la aviación comercial. Rev. Mex. Cienc. Agríc. 3(3): 579-594.

Yusuf, A.K. Mamza, P.A.P. Ahmed, A.S. and Agunwa, U. (2015). Extraction and characterization of castor seed oil from wild ricinus communis linn. International Journal of Science, Environment and technology. 4(5): 1392-1404.



  • There are currently no refbacks.

Copyright (c) 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.