Termopriming on germination, seedling emergence and seedling vigour of basil
PDF (Español (España))

Keywords

acondicionamiento térmico
germinación
emergencia
vigor
crecimiento vegetativo inicial termal conditioning
germination
emergence
vigour
early vegetative growth

How to Cite

Romero-Bastidas, M., Nieto-Garibay, A., Hernández-Montiel, L. G., Troyo-Diéguez, E., Ramírez-Serrano, R., & Murillo Amador, B. (2016). Termopriming on germination, seedling emergence and seedling vigour of basil. Nova Scientia, 8(16), 181–212. https://doi.org/10.21640/ns.v8i16.432

Abstract

Worldwide the economic importance of basil (Ocimum basilicum L.) has prompted the search for strategies, such as seed conditioning in order to improve the indices of vigour of the plant with respect to improving yield, quality and tolerance to some types of stress. The aim of this study was to determine the optimal threshold conditioning of the seeds needed with different temperature gradients on the characteristics of vigour related to morphometric and physiological variables of basil seedlings during the stages of germination, emergence and early vegetative growth. Basil seeds of the Nuffar variety were subjected to thermal conditioning treatments by exposure to dry heat using four temperature gradients (40, 50, 60 and 70 °C) and different time intervals (30, 60 and 90 min), as well as a control (25 °C) treatment. A completely randomized design was carried out with factorial arrangement with four and/or five repetitions. The results showed that the temperature and exposure times significantly (p ≤ 0.05) affected rates and percentages of germination and emergence, as well as the morphometric and physiological variables of the plant. In the germination stage, the treatment of 70 °C negatively affected the plant response in all variables, regardless of exposure times, while treatments 40, 50 and 60 °C were equal to control. In the emergence stage, the 60 °C treatment with an exposure time of 60 min significantly improved the different characteristics of vigour. However, the treatment at 70 °C caused a decrease in the different variables evaluated. In addition, during the early vegetative stage, exposure to 60 °C for 30 and 60 min significantly improved morphological and physiological variables of the plants compared to the control and other treatments.

https://doi.org/10.21640/ns.v8i16.432
PDF (Español (España))

References

Abdul, B., A. A., Anderson, J. D. (1970). Viability and leaching of sugars from germinating barley. Crop Science. 10: 31-34.

Adhikary, P., Tarai, P. (2013). Effects of Temperature and Gibberellic Acid (GA3) on seed Germination of Vicia sativa, Chenopodium album and Physalis minima. International Journal of Agriculture, Environment and Biotechnology. 6: 629-632.

Berry, J., Bjorman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology. 31: 491-543.

Bita, C. E., Gerats, T. (2013). Plant tolerance to high temperature in achanging environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science. 4: 1-18.

Bittencourt, M. L. C., Dias, D. C. F. S., Dias, L. A. S. (2005). Germination and vigour of primed asparagus seeds. Science Agriculture. 62: 319-324.

Bruce, T. J. A., Matthes, M. C., Napier, J. A., Picket, J. A. (2007). Stressful “memories” of plants: evidence and possible mechanisms. Plant Science. 173: 603-608.

Bruinsma, J. (1963). The quantitative analysis of chlorophylls a and b in plant extracts. Photochemistry and Photobiology. 2: 241-249.

Castillo, G. H., Santibáñez, Q. F. (1987). Efecto de la temperatura sobre la fenología del trigo (cultivar aurifen). Agricultura técnica. 47: 1.

Capanoglu, E. (2010). The potential of priming in food production. Trends in Food Science and Technology. 21: 399-407.

CONAGUA. (2014). Comisión Nacional del Agua. Reporte del clima en México. Reporte anual 2014. Coordinación General del Servicio Meteorológico Nacional. Gerencia de Meteorología y Climatología. Subgerencia de Pronóstico a Mediano y Largo Plazo. 27 p.

Denton, O. A., Oyekale, K. O., Nwangburuka, C. C., Daramola, D. S., Adeyeye, J. A., Olukayode, O. O. (2013). Influence of high dry heat temperature on seed germination, seedling emergence and seedling vigour of three cultivars of Corchorus olitorius seeds. American Journal of Research Communication. 1(5): 98-114.

Erge, H. S., Karadeniz, F., Koca, N., Soyer, Y. (2008). Effect of heat treatment on chlorophyll degradation and color loss in green peas. GIDA 33: 225-233.

Essemine, J., Ammar, S., Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defense. Journal Biology Science. 10: 565-572.

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México, México. 98 p.

Garibaldi, A., Gullino, M. L., Minuto, G. (1997). Diseases of basil and their management. Plant Disease. 81: 124-132.

Gashaw, M., Michelsen, A. (2002). Influence of heat shock on seed germination of plant from regularly burnt savanna woodlands and grasslands in Ethiopia. Plant Ecology. 159: 83-93.

Gazula, A., Kleinhenz, M. D., Streeter, J. G., Miller, A. R. (2005). Temperature and cultivar effects on anthocyanin and chlorophyll b concentrations in three related Lolla Rosso lettuce cultivars. HortScience 40: 1731-1733.

Haigh, A., M., Barlow, E. W. R., Milthorpe, F. L., Sinclair, P. J. (1986). Field emergence of tomato, carrot and onion seeds primed in an aerated salt solution. Journal of the American Society for Horticultural Science. 111: 660-665.

Hacisalihoglu, G., Ross, Z. (2010). The influence of priming on germination and soil emergence of non-aged and aged annual ryegrass seeds. Seed Science Technology 38: 214-217.

Hampton, J., Cookson, W., Grama, A., Rowarth, J., McGill, C., Hill, M., Cameron, K. (2000). Temperature and time variables for accelerated ageing testing of perennial ryegrass (Lolium perenne L.) seed lots. Seed Science and Technology. 28: 861-863.

Iloh, A. C., Omatta, G., Ogbadu, G. H., Onyenekwe, P. C. (2014). Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria. Scientific Research and Essays. 9: 806-813.

ISTA. (1996). International Seed Testing Association. International rules for seed testing. Seed Scientia Technology. 13: 299-513.

Kumar, R., Sharma, S. (2012). Effect of light and temperature on seed germination of important medicinal and aromatic plants in north western Himalayas. International Journal Medicinal Aromatic Plants. 2:468-475.

Kumar, S., Singh, K. K., Rai, L. K. (2004). In vitro propagation of an endangered sikkim hymalayan rhododendron (R. maddeni) from cotyledonary nodal segments. Journal American Rododendrons Society. 58: 101-105.

Kinoshita, T., Seki, M. (2014). Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiology 55: 1859-1863.

Kirschbaum, M. U. F. (2004). Direct and indirect climate change effects on photosyntesis and transpiration. Plant Biology. 6: 242-253.

Lee, G. J., Pokala, N., Vierling, E. (1995). Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. Journal of Biological Chemistry. 270: 10432-10438.

Little, T. M., Hills, F. J. (1989). Statistical methods in agricultural research. Versión en español. ‘Métodos estadísticos para la investigación en la agricultura’. Ed. Trillas. México. 270 p.

Maguire, J. D. (1962). Speed of germination- aid in selection and evaluation for seedling emergence and vigour. Crop Science. 2: 176-177.

Medlyn, B. E., Dreyer, E., Ellsworth, D. E., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Leroux, X., Loustau, D., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K. Y. (2002). Temperature response of parameters of a biochemically-based model of photosyntesis. II. A review of experimental data. Plant, Cell and Environment. 25:1167-1179.

Melander, B., Kristensen, J. K. (2011). Soil steaming effects on weed seedling emergence under the influence of soil type, soil moisture, soil structure and heat duration. Annals of Applied Biology. 158: 194-203.

Nieto, G. A., Troyo, D. E., Garcia, H. J. L., Murillo, A. B., Ruiz, E. F. H., Pimineta, B. E. (2009). Soil water stress effect during emergence and seedling stage in Capscicum frutescens L. and Capsicum annuum L. Tropical and Subtropical Agroecosystems. 10: 405-413.

Ojeda, S., C. M., Nieto, G. A., Reynaldo, E. I. M., Troyo, D. E., Ruiz, E. F. H., Murillo, A. B. (2013). Tolerance to water stress in varieties of basil (Ocimum basilicum L.). Terra Latinoamericana. 31: 145-154.

Parent, B., Turc, O., Gibon, Y., Stitt, M., Tardieu, F. (2010). Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. Journal of Experimental Botany. 61: 2057-2069.

Parera, C. A., Cantliffe, D. J. (1991). Improved germination and modified imbibition of shrunken-2 sweet corn by seed disinfection and solid matrix priming. Journal of the American Society for Horticultural Science. 116: 942-945.

Pinna, S. M., Mattana, E., Cañadas, M. E., Bacchetta, G. (2014). Effects of pre-treatments and temperature on seed viability and germination of Juniperus macrocarpa Sm. Comptes Rendus Biologies. 337: 338-344.

Piramila, B. H. M., Prabha, A. L., Nandagopalan, V., Stanley, A. L. (2012). Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry sedes of black gram. International Journal of Pharmaceutical and Phytopharmacological Research. 1: 194-202.

Raines, C. A., Lloyd, J. C., Dyer, T. A. (1999). New insights into the structure and function of sedoheptulose-1,7-bisphosphatase; an important but neglected Calvin cycle enzyme. Journal of Experimental Botany. 50: 1-8.

Rafe, A., Razavi, S. M. A. (2013). Dynamic viscoelastic study on the gelation of basil seed gum. International Journal of Food Science and Technology. 48: 556-563.

Randhir, R., Shetty, P., Shetty, K. (2002). DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors process. Biochemistry. 37: 1247-1256.

Ruelland, E., Zachowski, A. (2010). How plants sense temperature. Environmental and Experimental Botany. 69: 225-232.

Sassenrathcole, G. F., Pearcy, R. W., Steinmaus, S. (1994). The role of enzyme activation state in limiting carbon assimilation under variable light conditions. Photosynthesis Research. 41: 295-302.

Selvarani, K., Umarani, R. (2011). Evaluation of seed priming methods to improve seed vigour of onion (Allium cepa cv. aggregatum) and carrot (Daucus carota). Journal of Agricultural Technology. 7: 857-867.

StatSoft® Inc. (2011). Statistica. System reference. StatSoft, Inc., Tulsa, Oklahoma, USA. 1098 p.

Steel, G. D., Torrie, J. H. (1995). Bioestadística. Principios y procedimientos. Ed. McGraw Hill. México. 622 p.

Tardieu, F., Granier, C., Muller, B. (2011). Water deficit and growth. Coordinating processes without an orchestrator? Current Opinion in Plant Biology. 14: 283-289.

Wahid, A., Gelani, S., Ashraf, M., Foolad, R. M. (2007). Heat tolerance in plants: An overview. Enviromental and Experimental Botany. 61: 199-223.

Wise, R., Olson, A., Schrader, S., Sharkey, T. (2004). Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell and Environment. 27: 717-724.

West, E. M. J., Smith, A. J. C., Winter, K. (2011). Photosynthesis, reorganized. Science. 332: 311-312.

Wyenandt, A. C., Simon, E. J., McGrath, T. M., Ward, L. D. (2010). Susceptibility of basil cultivars and breeding lines to downy mildew (Peronospora belbahrii). HortScience. 45:1416-1419.

Yamori, W., Masumoto, C., Fukayama, H., Makino, A. (2012). Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. The Plant Journal. 71:871-880.

Yari, L., Aghaalikani, M., Khazaei, F. (2010). Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). ARPN Journal of Agricultural and Biological Science. 5: 1-6.

Yu, X., Zheng, G., Shan, L., Meng, G., Vingron, M., Liu, Q., Zhu, X. G. (2014). Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science; Plant Systems Biology. 5: 1-9.

Zinn, K. E., Tunc, O. M., Harper, J. F. (2010).Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany. 6: 1959-1968.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Nova Scientia