Environmental qualification of the housing. Hygrothermal strategies adaptability
PDF (Español (España))

Keywords

Climatic adaptability
building characteristics
constant zone. Valoración climatológica
solución constructiva
higrotérmia
vida útil

How to Cite

Fuentes Pérez, C. A. (2016). Environmental qualification of the housing. Hygrothermal strategies adaptability. Nova Scientia, 8(16), 278–312. https://doi.org/10.21640/ns.v8i16.360

Abstract

Thermal environmental rating is the process by which the consequences of the implementation, expansion, modification or removal of activities and elements within the housing case study, to try and determine the corrective or precautionary measures necessary to prevent or evaluated compensate possible thermal effects on the spaces. Where it will argue that urban climatology and establish constructive system hygrothermal environment. It observes and monitors the thermal and values your swing, setpoint set for winter and summer.
Based on the results of the annual performance average monthly temperature and relative humidity as well as strategies of adaptability and hygrothermal rating is determined. The experimental work is methodologically applied research, where different methods rely on various types as the documentary field and descriptive. The objective of this research is to determine the thermal environmental qualification only temperature and relative humidity inside the common housing in Tampico, Mexico.

https://doi.org/10.21640/ns.v8i16.360
PDF (Español (España))

References

Anlauft, Eva; Meinhold, Uwe; Wagner, Moritz; Wenzel, Urs. (2013). the energy optimised renovation of Nuremberg: Designing for energy and climate using hygrothermal building simulation. Bauphysik. Volumen: 35. (4). 266-279.

Auliciems, A. (1997). Human Bioclimatology. Springer.

Auliciems, A. y Szokolay, S. (1997). Thermal comfort. Notes of passive and low energy architecture international, en Brisbane, núm. 3, plea-university of Queensland.

ANSI-ASHRAE, 55. (2004). Thermal environmental conditions for human occupancy. Atlanta, E.U.A.

Candanedo, Jose A.; Dehkordi, Vahid R.; Saberi-Derakhtenjani, Ali; Athienitis, Andreas K. (2015). Near-optimal transition between temperature setpoints for peak load reduction in small buildings. Energy and Buildings. Volumen: 87. 123-133.

Chávez Del Valle, Francisco Javier. (2002). Zona variable de confort térmico. Tesis Doctoral. Escuela Técnica Superior de Arquitectura de Barcelona. Universitat Politécnica de Catalunya. Barcelona, España.

Gómez-Azpeitia, Gabriel; Bojórquez Morales, Gonzalo; Ruiz Torres, Raúl Pável. (2007). El confort térmico: dos enfoques teóricos enfrentados. Revista Palapa. Volumen: 2. (1) 45-57. Universidad de Colima. Colima. México.

González Cruz, Eduardo Manuel y Bravo Morales, Gaudy Claret. (2009). Sobre el confort térmico: temperaturas neutrales en el trópico húmedo. Revista Palapa. Volumen: 4. (1) 33-38. Universidad de Colima. Colima. México.

Griffiths, R.C. (1991). The two-locus ancestral graph. In: Basawa I.V. and Taylor, R.L. (Eds.), Selected Proceedings of the Symposium on Applied Probability, Sheffield, 1989. IMS Lecture Notes - Monograph Series, Volume: 18. Institute of Mathematical Statistics, Hayward, California. 100-117.

Humphreys, M.A. (1997). Thermal comfort. Notes passive and low energy architecture international. Queensland.

Humphreys, M. A. and Nicol, F. (2001). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Proceedings of Moving Thermal Comfort Standard s Into the 21 st Century. Windsor - UK.

Ioannou, A e Itard, L. C. M. (2015). Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings. Volumen: 92. 216-233.

ISO, International Organization for Standardization. (2005). ISO 7730:2005 (E) Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Ginebra: Edición de Autor.

Karagiozis, A. y Salonvaara, M. (2011). Hygrothermal system-performance of a whole building. Building and Environment. Volumen: 36 (6). 779-787.

Kolaitis, Dionysios I.; Malliotakis, Emmanouil; Kontogeorgos, Dimos A.; Mandilaras, Ioannis; Katsourinis, Dimitrios I.; Founti, Maria A. (2013). Comparative assessment of internal and external thermal insulation systems for energy efficient retrofitting of residential buildings. Energy and Buildings. Volumen: 64. 123-131.

Krüeger, E. L.; Minella, F. O.; Matzarakis, A. (2014). Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of B Ometeorology. Volumen: 58. 1727-1737.

Langmans, Jelle; Klein, Ralf; Roels, Staf. (2012). Hygrothermal risks of using exterior air barrier systems for highly insulated light weight walls: A laboratory investigation. Building and Environment. Volumen: 56. 192-202.

Lechner, Norbert. (2001). Heating, cooling, lighting. Desing methods for architects. John Wiley & Sons, Inc. Second edition. New York, New York. United States of America.

Li, Yanling; Babcock, Roger W., Jr. (2014). Green roofs against pollution and climate change. Agronomy for Sustainable Development. Volumen: 34. 695-705.

Marique, Anne-Francoise; de Meester, Tatiana; De Herde, Andre; Reiter, Sigrid. (2014). an online interactive tool to assess energy consumption in residential buildings and for daily mobility. Energy and Buildings. Volumen: 78. 50-58.

Moradias, P. A.; Silva, Pedro D.; Castro-Gomes, J. P.; Salazar, M. V.; Pires, L. (2012). Experimental study on hygrothermal behaviour of retrofit solutions applied to old building walls. Construction and Building Materials. Volumen: 35. 864-873.

Nicol, Fergus. (1996). International standards don't fit tropical buildings: what can we do Abollt It? Conferencia internacional sobre confort y comportamiento térmico de UK.

Nicol, F.; Humphreys, M. A. (2002). The Validity of ISO-PMV for Predicting Comfort Votes in Everyday Thermal Environments. Energy and Buildings, Lausanne. Volumen: 34. 667-684.

O 'Kelly, Matthew; Walter, Mark E.; Rowland, James R. (2014). Simulated hygrothermal performance of a Passivhaus in a mixed humid climate under dynamic load. Energy and Buildings. Volumen: 81. 211-218.

Sánchez González, Diego. (2011). Peligrosidad y exposición a los ciclones tropicales en ciudades del Golfo de México. El caso de Tampico, Revista de Geografía Norte Grande, Número: 50. 151-170.

Staines Orozco, Elidé. (2007). Opciones de adecuación al clima. Editorial Cigome. S.A. de C.V. Toluca, Estado de México. México.

Sulaiman, Halimi y Olsina, Fernando. (2014). Comfort reliability evaluation of building designs by stochastic hygrothermal simulation. Renewable & Sustainable Energy Reviews. Volumen: 40. 171-184.

Szokolay, Steven V. (2008). Introduction to Architectural Science. The basis of sustainable design. Second edition. Architectural Press. Elsevier.

Tariku, Fitsum; Kumaran, Kumar; Fazio, Paul. (2011). Determination of indoor humidity profile using a whole-building hygrothermal model. Building Simulation. Volumen: 4. (1). 61-78.

Taylor, J.; Davies, M; Mavrogianni, A; Chalabi, Z; Biddulph, P; Oikonomou, E; Das, P; Jones, B. (2014). The relative importance of input weather data for indoor overheating risk assessment in dwellings. Building and Environment. Volumen: 76. 81-91.

Van Hooff, T.; Blocken, B.; Hensen, J. L. M.; Timmermans, H. J. P. (2015). On the predicted effectiveness of climate adaptation measures for residential buildings. Building and Environment. Volumen: 83. 142-158.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Nova Scientia