Thermoluminescence of indium titanate europium activated
PDF (Español (España))

Keywords

Indium titanate
gamma radiation
thermoluminescence
dosimetry Titanato de Indio
radiación gamma
termoluminiscencia
dosimetría

How to Cite

Muñoz Palma, I., Brown, F., Vázquez-Paz, F. M., Marcazzó, J., & Cruz-Zaragoza, E. (2016). Thermoluminescence of indium titanate europium activated. Nova Scientia, 8(16), 77–90. https://doi.org/10.21640/ns.v8i16.350

Abstract

In2TiO5 is a good insulator at room temperature because it has a band gap of 3.2 eV. The thermoluminescent properties of europium activated In2TiO5 are reported in this work. This material was prepared by conventional solid state reaction, and its characterization was carried out by scanning electronic microscopy, energy dispersive spectroscopy and X-ray diffraction. The thermoluminescent intensity of the europium activated In2TiO5 increased nearly six times in comparison to In2TiO5 pure phosphor. The glow curve of In2TiO5: Eu was a broad band and it shows a maximum at 382 K. Five peaks centered at 372, 382, 432, 488 and 556 K were obtained by deconvolution method assuming the general order kinetics model. These peaks are in agreement with those obtained by the thermal bleaching named TM-TSTOP method. A linear dose-response was obtained between 31 to 1200 Gy followed by a saturation stage at 1400 Gy dose gamma radiation. The standard deviation of the thermoluminescent signal reproducibility was 5.7 %. The fading at room temperature was significantly influenced by the low temperature peak (382 K). Therefore, this material could be taken into account as a phosphor for high dose gamma dosimetry

https://doi.org/10.21640/ns.v8i16.350
PDF (Español (España))

References

Arshak, K.I., Korostynska, O. (2003). Thin films of (TeO)(InO) as gamma radiation sensors. Sens. Rev. 23 (1), 48-54.

Arshak, K., Arshak, A. Zleetni, S., Korostynska, O. (2004). Thin and thick films of metal oxides and metal phthalocyanines as gamma radiation dosimeters. IEEE Trans. on Nucl. Sci. 51 (5), 2250-2255.

Balian, H. G. Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessinggoodness-of-fit of gamma rayspectral peak. Nucl. Instrum. Methods. 145, 389.

Brown, F., Alvarez, V.E., Bernal, R., Cruz Vazquez, C., BorbónNuñez, H., Muñoz, I.C., Castaño V.M. (2014). Thermoluminescence of Sc2O3 exposed to beta-particle irradiation. Optical Materials. (36) 820-822.

Brown, F., Hernandez-Perez, T.C., Muñoz, I.C., Alvarez-Montaño, V.E., Cruz-Vazquez, C., Bernal, R. (2015). Synthesis and thermoluminescence of a spinel-type oxide exposed to beta-particle irradiation. Res. Soc. Symp. Proc. Vol 1769. 2015 DOI.10.1557./opl.2015.126.

Fahim, F.K., Arshak, K.I., Korostynska, O. (2003). Hybrid oxide mixtures as γ-radiation sensors. Sensors Proceedings of IEEE.1, 84-87.

Gómez-Ros, J. M., Furetta, C., Cruz-Zaragoza, E., Lis, M., Torres, A., Monsivais, G. (2006). Dose dependence and thermal stability of the thermoluminescence emission in inorganic dust from mint and chamomile. Nuclear Instruments and Methods in Physics Research A. 566, 727-732.

Horowitz, Y.S., Yossian, D. (1995). Computerised glow curve deconvolution: application to thermoluminescence dosimetry. Radiat. Prot. Dosim. 60, 1–114.

Kirsh, Y., Kristianpoller, N., Chen, R. (1977). Vacuum ultra-violet induced thermoluminescence in γ-irradiated and non-irradiated MgO powder. Phil. Mag. 35 (3), 653-661.

Kortov, V.S., Milman, I.I., Slesarev, A.I., Kijko, V.S. (1993). New BeO ceramics for TL ESR dosimetry. Radiat. Prot. Dosim. 47, 267-270.

McKeever SWS. (1980) On the analysis of complex thermoluminescence glow-curves: resolution in to individual peaks. Phys. Status Solidi A. (62), 331-339.

McKeever S. W. S. (1985) Thermoluminescence of solids. Cambridge. Chapter I, II. pp. 1-63.

Mehta, S.K., Sengupta, S. (1976). Gamma dosimetry with Al2O3 thermoluminescent phosphor. Phys. Med. Biol. 21 (6), 955-964.

Moore, L.E. (1957). Thermoluminescence of sodium sulfate and lead sulfate and miscellaneous sulfates, carbonates and oxides. J. Phys. Chem. 61 (5), 636-639.

Muñoz, I.C., Brown, F., Durán-Muñoz, H., Cruz-Zaragoza, E., Durán-Torres, B., V.E. Alvarez-Montaño, V.E. (2014). Thermoluminescence response and glow curve structure of Sc2TiO5 ß-irradiated. Appl. Rad. Isot. (90) 58-61.

Pai R., Majeed J., Banerjee, A. M., Arya, A., Bhattachcharya S., Rao, R., Bharadwaj, S. R. (2012). Role of Nd3+ ions in modifying the band structure and photocatalytic properties of substituted indium titanates, In2(1-x)Nd2xTiO5 oxides. J. Phys. Chem. C. 116, 1458-1471.

Rasheedy, M.S. (1993). On the general-order kinetics of the thermoluminescence glow peak. J. Phys. Condens. Matter 5, 633–636.

Rieke, J.K., Daniels, F. (1957). Thermoluminescence studies of aluminum oxide. J. Phys. Chem. 61 (5), 629-633.

Senegas, P.J., Manaud, J.P., Galy, J. (1975). Sur un nouveau type d’oxides doubles M+IVIn2O5(M=Ti,V):Etude Cristallochimique. Acta Cryst. B31, 1614-1618.

Thomas, B., Houston, E. (1964). Correlation of optical absorption and thermoluminescence curves for single crystals of magnesium oxide. Br. J. Appl. Phys. 15 (8), 953-958.

Wen-Deng Wang, Fu-Qiang Huang, Cun-Ming Liu, Xin-Ping Lin, Jian-Lin Shi. (2007). Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst. Mat. Sci. & Eng. B. 139, 74-80.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Nova Scientia