Regularized Phase Tracking using fixed-point for fringe patterns demodulation
PDF (Español (España))


fringe analysys
phase demodulation
regularized phase tracking
cost functional
fixed point
numerical performance
inverse problems
minimization procesamiento de franjas
demodulación de fase
seguimiento de fase regularizado
punto fijo
desempeño numérico
problemas inversos

How to Cite

Pérez Dawn, E., Legarda Sáenz, R., & Espinosa Romero, A. . (2022). Regularized Phase Tracking using fixed-point for fringe patterns demodulation. Nova Scientia, 14(29).


The objective of fringe pattern analysis is to extract modulated experimental information in an image. Among the techniques used in the demodulation process is the Regularized Phase Tracking. In this technique, a functional is proposed which is usually solved with classical minimization methods. This paper presents a minimization method for this technique using the fixed-point technique, which presents a normalized error like classical minimization methods, but with a notable reduction in processing time.
PDF (Español (España))


Jupyter Team. (2022, 10 de febrero). Jupyter Project Documentation.

Bertero, M., & Boccacci, P. (1998). Introduction to Inverse Problems in Imaging. Bristol: Institute of Physics Publishing.

Brito-Loeza, C., Legarda-Saenz, R., & Martin-Gonzalez, A. (2020). A fast algorithm for a total variation based phase demodulation model. Numerical Methods for Partial Differential Equations, 36(3), 617-636.

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (Third ed.). Johns Hopkins University Press.

Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing (Third ed.). Pearson Prentice Hall.

Kreis, T. (2004). Handbook of Holographic Interferometry: Optical and Digital Methods. John Wiley & Sons.

Marroquin, J. L., & Figueroa, J. (1997). Robust quadrature filters. J. Opt. Soc. Am. A, 14(4), 779-791.

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

Perlin, M., & Bustamante, M. D. (2016). A robust quantitative comparison criterion of two signals based on the Sobolev norm of theri difference. J. Eng. Math., 101, 115-124.

Saad, Y. (2003). Iterative methods for sparse linear systems (Second ed.). SIAM.

Sauer, T. (2012). Numerical Analysis. Pearson.

Servin, M., Marroquin, J. L., & Cuevas, F. J. (1997). Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl. Opt., 36, 4540-4548.

Servin, M., Marroquin, J. L., & Cuevas, F. J. (2001). Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J. Opt. Soc. Am. A , 18(3), 689-695.

Servin, M., Quiroga, J. A., & Marroquin, J. L. (2003). General n-dimensional quadrature transform and its application to interferogram demodulation. J. Opt. Soc. Am. A, 20(5), 925-934.

Servin, M., Quiroga, J. A., & Padilla, J. M. (2014). Fringe Pattern Analysis for Optical Metrology. John Wiley & Sons, Ltd.

Takeda, M., Ina, H., & Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Optical Society of America, 72(1), 156-160.

Tikhonov, A. N., & Arsenin, V. I. (1977). Solutions of Ill Posed Problems. Washington D. C.: V. H. Winston & Sons.

Zuo, C., Qian, J., Feng, S., Yin, W., Li, Y., Fan, P., . . . Chen, Q. (23 de 02 de 2022). Deep learning in optical metrology: a review. Light: Science & Applications, 11(39).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia