Ionic sufficiency of the nutrient solution and effects on the total soluble solid’s concentration in mini tomatoes


petiole cell extract
fruit cell extract
high-tech greenhouse
electrical conductivity
Solanum lycopersicum L.
nutrition extracto celular de peciolo
extracto celular de fruto
invernadero de alta tecnología
conductividad eléctrica
Solanum lycopersicum L.

How to Cite

Benavides Mendoza, A., de Alba Romenus, K., León de la Rocha, J. F., Narváez Ortiz, W. A. ., & Francisco Francisco, N. (2022). Ionic sufficiency of the nutrient solution and effects on the total soluble solid’s concentration in mini tomatoes. Nova Scientia, 14(29).


Mini tomato production in the greenhouse has reached the last decades, however, the efficient use of fertilizers and the effect on the quality of the fruits are often overlooked. In this work, the ionic concentration ranges were determined, as well as the relationship between the ions (NO3-, K+, Ca2+, and Na+), the pH, electrical conductivity of the nutrient solution, the total soluble solids (TSS) of the cell extract of petiole (PCE) and the fruit cell extract (FCE) in mini tomatoes (Grape, Savantas, and Tov) in the summer-winter cycle. High ranges of ionic concentration were recorded. The Na+ and K+ collected in the emitters showed strong resonance with the same ions recorded in the PCE. The heat map of the correlations showed clusters between the K+ and Ca2+ of the nutrient solution, which were found to be highly correlated with the PCE and FCE content in the winter season. Principal component analysis showed that NO3- and Na+ are far from the K+ and Ca2+ content of PCE and FCE. The concentration ranges found suggest ionic sufficiency for mini tomato genotypes produced in high-tech greenhouse.


Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS letters, 581, 2247-2254.

Ares, G., Ha, B., & Jaeger, S. R. (2021). Consumer attitudes to vertical farming (indoor plant factory with artificial lighting) in China, Singapore, UK, and USA: A multi-method study. Food Research International, 150, 110811.

Bar-Yosef, B. (2008). Fertigation management and crops response to solution recycling in semi-closed greenhouses. In Soilless Culture: Theory and Practice, 341–424.

Balotf, S., & Kavoosi, G. (2011). Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate. African Journal of Biotechnology, 10(78), 17973-17980.

Chapagain, B., Wiesman, Z., Zaccai, M., Imas, P., & Magen, H. (2003). Potassium Chloride Enhances Fruit Appearance and Improves Quality of Fertigated Greenhouse Tomato as Compared to Potassium Nitrate. J. Plant Nutr, 26, 653-658.

Cadahia, L. C. (2008). La savia como índice de fertilización. ed. Mundi-Prensa Libros, Madrid, España. 256 p.

Cadahía, L. C. (2005). Fertirrigación. Cultivos hortícolas, frutales y ornamentales.: cultivos hortícolas, frutales y ornamentales. 3rd rev. ed. Mundi-Prensa Libros, Madrid, España. 681p.

Dayod, M., Tyerman, S. D., Leigh, R. A., & Gilliham, M. (2010). Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 247, 215-231.

Fandi, M., Muhtaseb, J. and Hussein, M. (2010). Effect of N, P, K concentrations on yield and fruit quality of tomato (Solanum lycopersicum L.) in tuff culture. Journal of Central European Agriculture, 11, 179-184.

Georgieva, M. I., & Slavov, D. N. (2016). Effect of sodium nitrate on element translocation in tomato plants. Евразийский Союз Ученых, 3, 114-117.

Giuffrida, F., Martorana, M., & Leonardi, C. (2009). How Sodium Chloride Concentration in the Nutrient Solution Influences the Mineral Composition of Tomato Leaves and Fruits. HortScience, 44(3), 707–711.

Javaria, S., Khan, M. Q., & Bakhsh, I. (2012). Effect of potassium on chemical and sensory attributes of tomato fruit. The journal of animal & plant sciences, 22, 1081-1085.

Hemming, S., de Zwart, F., Elings, A., Petropoulou, A., & Righini, I. (2020). Cherry tomato production in intelligent greenhouses-sensors and ai for control of climate, irrigation, crop yield, and quality. Sensors (Switzerland), 20(22), 1–30.

Hochmuth, G., Maynard, D., Vavrina, C., Hanlon, E., & Simonne, E. (2004). Plant tissue analysis and interpretation for vegetable crops in Florida. In: Nutrient Management of Vegetable and Row Crops Handbook. pp 45-92.

Islam, M. Z., Mele, M. A., Choi, K. Y., & Kang, H. M. (2018). Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system. Bragantia, 77(2), 385–393.

Leyva, G., Sánchez, P., Alcántar, G., Valenzuela, J. G., Gavi, F., & Martínez, Á. (2005). Contenido de nitratos en extracto celulares de pecíolos y frutos de tomate. Revista Fitotecnia Mexicana, 28, 145-150.

Llanderal, A., García-Caparrós, P., Pérez-Alonso, J., Contreras, J. I., Segura, M. L., Reca, J., & Lao M. T. (2020). Approach to Petiole Sap Nutritional Diagnosis Method by Empirical Model Based on Climatic and Growth Parameters. Agronomy, 10, 2-12.

Llanderal, A., Lao, M. T., Contreras, J. I., & Segura, M. L. (2018). Diagnosis and Recommendation integrated system norms and sufficiency ranges for tomato greenhouse in Mediterranean climate. HortScience, 53, 479-482.

Miles, C., Roozen, J., Maynard, E., & Coolong, T. (2012). Fertigation in Organic Vegetable Production Systems. Organic Agriculture.

Osvalde, A., Karlsons, A., & Cekstere, G. (2021). Leaf nutrient status of tomatoes in coconut coir medium–differences in cultivars, impact on yield and quality. Agronomy Research, in press.

Peña‐Fleitas, M. T., Gallardo, M., Thompson, R. B., Farneselli, M., & Padilla, F. M. (2015). Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Annals of Applied Biology, 167, 387-405.

Rietra, R. P., Heinen, M., Dimkpa, C. O., & Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in soil science and plant analysis, 48, 1895-1920.

Rogiers, S. Y., Coetzee, Z. A., Walker, R. R., Deloire, A., & Tyerman, S. D. (2017). Potassium in the grape (Vitis vinifera L.) berry: transport and function. Frontiers in Plant Science, 8, 1629.

Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2016). Carbon dioxide enrichment: A technique to mitigate the negative effects of salinity on the productivity of high value tomatoes. Spanish Journal of Agricultural Research, 14(2).

Sanjuan-Delmás, D., Josa, A., Muñoz, P., Gassó, S., Rieradevall, J., & Gabarrell, X. (2020). Applying nutrient dynamics to adjust the nutrient-water balance in hydroponic crops. A case study with open hydroponic tomato crops from Barcelona. Scientia Horticulturae, 261, 108908.

Schulker, B. A., Jackson, B. E., Fonteno, W. C., Heitman, J. L., & Albano, J. P. (2020). Comparison of Water Capture Efficiency through Two Irrigation Techniques of Three Common Greenhouse Soilless Substrate Components. Agronomy 2020, Vol. 10, Page 1389, 10(9), 1389.

Souri, M. K., & Dehnavard, S. (2017). Characterization of tomato growth and fruit quality under foliar ammonium sprays. Open Agriculture, 2, 531-536.

Subbarao, G. V., OIto, W. L, Berry, R. M., & Wheeler. (2003). Sodium—a functional plant nutrient. Critical Reviews in Plant Sciences, 22, 391-416.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia