Effect of silver on structural, optical, and electrical properties of ZnO:Al/Ag/ZnO:Al thin films


thin films
magnetron sputtering
transparent conductive oxides
unbalanced magnetron
optical properties
electrical properties
physical properties
structural properties
multilayer películas delgadas
erosión catódica de magnetrón
óxidos conductores transparentes
magnetrón desbalanceado
propiedades ópticas
propiedades eléctricas
propiedades físicas
propiedades estructurales

How to Cite

Carrasco Hernández, A. R. ., Ruvalcaba Ontiveros, R. I., Esparza Ponce, H. E., Olivares Ramírez, J. M., Parra Michel, J. R., & Duarte Moller, J. A. (2022). Effect of silver on structural, optical, and electrical properties of ZnO:Al/Ag/ZnO:Al thin films. Nova Scientia, 14(29). https://doi.org/10.21640/ns.v14i29.3038


In this work, thin films with a ZnO:Al/Ag/ZnO:Al multilayer structure were deposited by radio frequency (RF) and pulsed DC sources in a magnetron sputtering system on glass substrates at 50 °C with different deposition times of the Ag layer. The results showed that the thin films' properties improved with increasing the deposition time of the silver metallic interlayer and with thermal treatment at 300 °C for one hour. The highest average transmittance in the visible range was 89 %. The best values of resistivity and conductivity were 10-4 Ω·cm and 103 Ω-1cm-1, respectively. Finally, the XRD patterns showed that with an increase in the Ag layer's deposition time, the plane's peak (111) belonging to the Ag plane was observed.



Abu-Thabit, N. Y., & Makhlouf, A. S. H. (2019). Fundamental of smart coatings and thin films: Synthesis, deposition methods, and industrial applications. In Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-849870-5.00001-X

Ali, N., Hussain, S. T., Iqbal, M. A., Hutching, K., & Lane, D. (2013). Structural and optoelectronic properties of antimony tin sulphide thin films deposited by thermal evaporation techniques. Optik, 124(21), 4746–4749. https://doi.org/10.1016/j.ijleo.2013.01.086

Ayachi, B., Aviles, T., Vilcot, J. P., & Sion, C. (2016). Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications. Applied Surface Science, 366, 53–58. https://doi.org/10.1016/j.apsusc.2016.01.054

Barman, B., Swami, S. K., & Dutta, V. (2021). Fabrication of highly conducting ZnO/Ag/ZnO and AZO/Ag/AZO transparent conducting oxide layers using RF magnetron sputtering at room temperature. Materials Science in Semiconductor Processing, 129, 105801. https://doi.org/10.1016/j.mssp.2021.105801

Bingel, A., Steglich, M., Naujok, P., Muller, R., Schulz, U., Kaiser, N., & Tunnermann, A. (2016). Influence of the ZnO:Al dispersion on the performance of ZnO:Al/Ag/ZnO:Al transparent electrodes. Thin Solid Films, 616, 594–600. https://doi.org/10.1016/j.tsf.2016.09.032

Bright, C. I. (2018). Transparent conductive thin films. In Optical Thin Films and Coatings: From Materials to Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102073-9.00021-7

Chein-Hsun, C., Hung-Wei, W., & Jow-Lay, H. (2014). AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications. Materials Science and Engineering B, 186, 117–121. https://doi.org/10.1016/j.mseb.2014.03.016

Chu, C. H., Wu, H. W., & Huang, J. L. (2016). Effect of annealing temperature and atmosphere on aluminum-doped ZnO/Au/aluminum-doped ZnO thin film properties. Thin Solid Films, 605, 121–128. https://doi.org/10.1016/j.tsf.2015.11.043

G-Berasategui, E., Zubizarreta, C., Bayón, R., Barriga, J., Barros, R., Martins, R., & Fortunato, E. (2015). Study of the optical, electrical and corrosion resistance properties of AZO layers deposited by DC pulsed magnetron sputtering. Surface and Coatings Technology, 271, 141–147. https://doi.org/10.1016/j.surfcoat.2014.12.062

Ho Kim, J., Hwan Lee, J., Kim, S. W., Yoo, Y. Z., & Seong, T. Y. (2015). Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices. Ceramics International, 41(5), 7146–7150. https://doi.org/10.1016/j.ceramint.2015.02.031

Jilani, A., Abdel-wahab, M. S., & Hammad, A. H. (2017). Advance Deposition Techniques for Thin Film and Coating. Modern Technologies for Creating the Thin-Film Systems and Coatings. https://doi.org/10.5772/65702

Jubu, P. R., Yam, F. K., Igba, V. M., & Beh, K. P. (2020). Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–A case study of β-Ga2O3. Journal of Solid State Chemistry, 290, 121576. https://doi.org/10.1016/j.jssc.2020.121576

Kim, J. H., Lee, H. K., Na, J. Y., Kim, S. K., Yoo, Y. Z., & Seong, T. Y. (2015). Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2multilayer films for photovoltaic devices. Ceramics International, 41(6), 8059–8063. https://doi.org/10.1016/j.ceramint.2015.03.002

Klaus, Ellmer; Andreas, Klein; Bernd, R. (2008). Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells.

Li, M., Zhao, M., Jiang, D., Yang, M., Li, Q., Shan, C., Zhou, X., Duan, Y., Wang, N., & Sun, J. (2019). Optimizing the spacing of Ag nanoparticle layers to enhance the performance of ZnO/Ag/ZnO/Ag/ZnO multilayer-structured UV photodetectors. Sensors and Actuators, A: Physical, 297, 111501. https://doi.org/10.1016/j.sna.2019.07.025

Liu, H., Zhou, P., Zhang, L., Liang, Z., Zhao, H., & Wang, Z. (2016). Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering. Materials Letters, 164, 509–512. https://doi.org/10.1016/j.matlet.2015.11.038

Luque, A., & Hegedus, S. (2003). Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Ltd.

Mattox, D. M. (2018). Physical Sputtering and Sputter Deposition. In The Foundations of Vacuum Coating Technology. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813084-1.00004-2

Mei, F., Li, R., & Yuan, T. (2020). Transparent and conductive applications of tin oxide. In Tin Oxide Materials. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815924-8.00020-7

Ozbay, S., Erdogan, N., Erden, F., Ekmekcioglu, M., Ozdemir, M., Aygun, G., & Ozyuzer, L. (2020). Surface free energy analysis of ITO/Au/ITO multilayer thin films on polycarbonate substrate by apparent contact angle measurements. Applied Surface Science, 529, 147111. https://doi.org/10.1016/j.apsusc.2020.147111

Saive, R., Borsuk, A. M., Emmer, H. S., Bukowsky, C. R., Lloyd, J. V., Yalamanchili, S., & Atwater, H. A. (2016). Effectively Transparent Front Contacts for Optoelectronic Devices. Advanced Optical Materials, 4(10), 1470–1474. https://doi.org/10.1002/adom.201600252

Socol, M., Preda, N., Breazu, C., Florica, C., Costas, A., Istrate, C. M., Stanculescu, A., Girtan, M., & Gherendi, F. (2018). Organic heterostructures obtained on ZnO/Ag/ZnO electrode. Vacuum, 154, 366–370. https://doi.org/10.1016/j.vacuum.2018.05.039

Zhang, C., Zhao, J., Wu, H., & Yu, S. (2020). The enhancement of thermal endurance in doped low emissive ZnO/Ag/ZnO multilayer thin film. Journal of Alloys and Compounds, 832, 154983. https://doi.org/10.1016/j.jallcom.2020.154983

Zhang, Q., Zhao, Y., Jia, Z., Qin, Z., Chu, L., Yang, J., Zhang, J., Huang, W., & Li, X. (2016). High Stable, Transparent and Conductive ZnO/Ag/ZnO Nanofilm Electrodes on Rigid/Flexible Substrates. Energies, 9(6), 443. https://doi.org/10.3390/en9060443

Zhang, Xiong, J., Liu, L., Zhang, X., & Gu, H. (2016). Influence of annealing temperature on structural, optical and electrical properties of AZO/Pd/AZO films. Solar Energy Materials and Solar Cells, 153, 52–60. https://doi.org/10.1016/j.solmat.2016.04.015

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia