Influence of organic fertilizers and silicon on the physiology, yield, and nutraceutical quality of the strawberry crop
PDF (Español (España))

Keywords

strawberry
organic agriculture
silicon
yield
nutraceutical quality
nutrients
growth
crops
floors
environment
production
chemicals
control
fertilization
treatments fresa
agricultura orgánica
silicio
rendimiento
calidad nutracéutica
nutrientes
crecimiento
cultivos
plantas
medio ambiente
producción
químicos
control
fertilización
tratamientos

How to Cite

Hernández Valencia, R. D., Juárez Maldonado, A., Pérez Hernández, A., Lozano Cavazos, C. J. ., Zermeño González , A., & González Fuentes, J. A. . (2022). Influence of organic fertilizers and silicon on the physiology, yield, and nutraceutical quality of the strawberry crop. Nova Scientia, 14(28). https://doi.org/10.21640/ns.v14i28.3032

Abstract

A suitable combination of organic sources of nutrients can allow an adequate growth, yield of the strawberry crop, and decrease the use of chemical fertilizers to the benefit of the environment and consumers. Likewise, silicon can help plants to withstand adverse environmental, biological, and edaphic conditions, increasing and improving production quality. Therefore, the objective of this study was to evaluate the effect of three sources of organic fertilization: one of animal origin (fish); one of vegetable origin (corn), and one of animal and vegetable origin (fish - corn) plus a chemical treatment such as control (Steiner), with three silicon concentrations of 0, 15 and 20 ppm. Growth parameters, physiological parameters, as well as nutraceutical performance and quality were evaluated in strawberry fruits of the Camino Real cultivar, under a completely randomized design with factorial arrangement (4 x 3). The results of vegetative growth and physiological parameters of the treatments with organic fertilization showed statistically equal values ​​to the control treatment, likewise for the yield and nutraceutical quality. The addition of silicon to the doses studied did not cause effects on any of the variables studied. The results suggest that it is totally feasible to replace chemical fertilization with organic, obtaining identical results.

https://doi.org/10.21640/ns.v14i28.3032
PDF (Español (España))

References

AOAC Official Method 942.15. (2005). Acidity (Titratable) of Fruit Products. Official method of Analysis of AOAC International.

Alalaf, A. H. E., Shayal Alalam, A. T., y Fekry, W. M. E. (2020). Improve the vegetative growth and mineral content of grapefruit seedlings by adding some bio and organic fertilizers. EurAsian Journal of BioSciences Eurasia J Biosci, 14(November 2019), 4451-4456.

Arvouet-Grand, A., Vennat, B., Pourrat, A., y Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. J Pharm Belg, 49(6), 462-468.

Azad, M. O. K., Park, B. S., Adnan, M., Germ, M., Kreft, I., Woo, S. H., y Park, C. H. (2021). Silicon biostimulant enhances the growth characteristics and fortifies the bioactive compounds in common and Tartary buckwheat plant. Journal of Crop Science and Biotechnology, 24(1), 51-59. https://doi.org/10.1007/s12892-020-00058-1

Berova, M., Karanatsidis, G., Sapundzhieva, K., y Nikolova, V. (2010). Effect of organic fertilization on growth and yield of pepper plants (Capsicum annuum L.). Folia Horticulturae, 22(1), 3-7. https://doi.org/10.2478/fhort-2013-0143

Benbrook, C., Zhao, X., Yanez, J., Davies, N., y Andrews, P. (2008). New Evidence Confirms the Nutritional Superiority of Plant-Based Organic Food. The Organic Center.

Brand-Williams, M. Cuvelier, and C. Berset. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Cao, B. L., Xu, K., Shi, J., Xin, G. F., Liu, C. Y. y Li X. (2013). Effects of silicon on growth, photosynthesis, and transpiration of tomato. Plant Nutr Fertil Sci, 19, 354-360.

Cantillano, R. F. F., Ávila, J. M. M., Peralba, M. do C. R., Pizzolato, T. M., y Toralles, R. P. (2012). Actividad antioxidante, compuestos fenólicos y ácido ascórbico de frutillas en dos sistemas de producción. Horticultura Brasileira, 30(4), 620-626. https://doi.org/10.1590/s0102-05362012000400010

Cooke, J., y Leishman, M. R. (2016). Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Functional Ecology, 30(8), 1340-1357. https://doi.org/10.1111/1365-2435.12713

De las Heras, J., Fabeiro C., Meco R. (2003). Fundamentos de la agricultura ecológica: realidad actual y perspectivas. Universidad de Castilla.

Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., y Bidabadi, S. S. (2016). Effects of potassium silicate and nanosilica on quantitative and qualitative characteristics of a commercial strawberry (fragaria × ananassa cv. ‘camarosa’). Journal of Plant Nutrition, 39(4), 502-507. https://doi.org/10.1080/01904167.2015.1086789

Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., y Shiranibidabadi, S. (2018). Effect of Silicon on Growth and Development of Strawberry under Water Deficit Conditions. Horticultural Plant Journal, 4(6), 226-232. https://doi.org/10.1016/j.hpj.2018.09.004.

De Melo Filho, J. S., Da Silva, T. I., De Melo Gonçalves, A. C., De Sousa, L. V., Véras, M. L. M., y Dias, T. J. (2020). Physiological responses of beet plants irrigated with saline water and silicon application. Comunicata Scientiae, 11(March), 1-8. https://doi.org/10.14295/cs.v11i0.3113.

Demirsoy, H., Dermirsoy, L., y Ozturk, A. (2005). Improved model for the non-destructive estimation of strawberry leaf area. Ondokuz Mays University. Faculty of Agriculture. Department of Horticulture. Fruits, 2005. Vol. 60. 10.1051/fruits:2005014.

FAOSTAT. (2019). The statistics division of the Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/es/#data/QC

Fulton, A., Buchner, R., Olson, B., Schwankl, L., Gilles, C., Bertagna, N., … Shackel, K. (2001). Rapid equilibration of leaf and stem water potential under field conditions in almonds, walnuts, and prunes. HortTechnology, 11(4), 609–615. https://doi.org/10.21273/HORTTECH.11.4.609

García, E. (2018). Mitigación del déficit hídrico en Mentha spicata L. con fertilizantes orgánicos, expresado en variables fisiológicas y de producción. [CIBNOR. Tesis de grado]. http://dspace.cibnor.mx:8080/handle/123456789/1733

García, C. V., Becerril, R. E., Saucedo, V. C., Velazco, C. C., Calderón, Z. G., Espinosa, H. V., Jaen, C. D. (2019). Combinación de fertilización orgánica, inorgánica y hongos micorrícicos para mejorar calidad de los frutos de fresa (Fragaria x ananassa Duch). Colegio de Postgraduados. Agrociencia, 53, 1247-1255.

Gómez, M.A. (2004). La agricultura orgánica en México y el mundo. Biodiversitas, 55, 13-13.

Gómez, C. M. A., Schwentessius R., Meraz, A. M. R., Lobato, G. A. J., y Gómez T. L. (2005). Agricultura, apicultura y ganadería orgánica de México. 2005. Consejo Nacional de Ciencia y Tecnología (CONACYT), Secretaria de Agricultura, Ganadería, Desarrollo, Rural, Pesca y Alimentación (SAGARPA), Universidad Autónoma Chapingo, Centro de Investigaciones Económicas, Sociales y tecnológicas (CIESTAAM), Programa Integración Agricultura Industria (PIAI).

Gutiérrez Miceli, F. A., Santiago Borraz, J., Montes Molina, J. A., Nafate, C. C., Abud Archila, M., Oliva Llaven, M. A., Rincón Rosales, R., y Dendooven, L . (2007). Vermicompost como suplemento de suelo para mejorar el crecimiento, rendimiento y calidad del fruto del tomate (Lycopersicum esculentum). Bioresource Technol, 98(15), 2781-2786.

Grech, H. C. (2020). Evaluación del crecimiento y contenido de clorofilas, carbohidratos y lípidos en cultivo de invierno de lactuca sativa l. fertilizado con abono abonos orgánicos. [Trabajo final de grado].

Hussain, S., Mumtaz, M., Manzoor, S., Shuxian, L., Ahmed, I., Skalicky, M., … Liu, W. (2021). Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry, 159(August 2020), 43-52. https://doi.org/10.1016/j.plaphy.2020.11.053

International Federation of Organic Agriculture Movements (IFOAM). (2008). Definition of Organic Agriculture.

Kumar, N., Singh, H. K., y Mishra, P. K. (2015). Impact of Organic Manures and Biofertilizers on Growth and Quality Parameters of Strawberry cv. Chandler. Indian Journal of Science and Technology, 8(15). https://doi.org/10.17485/ijst/2015/v8i15/51107

López, d. C. J. (2017). Estudio comparativo de la actividad antioxidante en fresas de cultivos de origen tradicional versus ecológico. [Universidad de Da Coruña. Facultad de Ciencias. Tesis de Grado].

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., y Song, A. (2015). Silicon in agriculture: From theory to practice. Silicon in Agriculture: From Theory to Practice, 1-235. https://doi.org/10.1007/978-94-017-9978-2.

Molina, N., C. R. (2014). Efecto de cuatro biofertilizantes en la producción de estolones y fruto de fresa. 72. https://www.zaragoza.unam.mx/portal/wpcontent/Portal2015/Licenciaturas/biologia/tesis/tesis_molina_nieto.pdf

Mena, L., Sarmiento, G., y Camargo, P. (2017). Impact of the integral fertilizer on strawberry yield and quality (Fragaria x ananassa Duch.) cv. Selva under a drip irrigation system and plastic. Scientia Agropecuaria, 8(4), 357-366. https://doi.org/10.17268/sci.agropecu.2017.04.07.

Nada, M. (2020). Effect of Foliar Application with Potassium Silicate and Glycine Betaine on Growth and Early Yield Quality of Strawberry Plants. Journal of Plant Production, 11(12), 1295-1302. https://dx.doi.org/10.21608/jpp.2020.149800

Neamah, S. S., Al-Abbasi, G. B. A., y Hasan, A. E. (2020). Effect of organic and bio fertilization in yield characters and fruit quality of strawberry fragariax ananassa duch rubygem. Plant Archives, 20(1), 408-412.

Ouellette, S., Goyette, M.H., Labbe, C., Laur, J., Gaudreau, L., Gosselin, A., Dorais, M., Deshmukh, R.K., Belanger, R.R. (2017). Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Front. Plant Sci, 8. https://doi.org/10.3389/fpls.2017.00949

Padayatt, S. J., Daruwala, R., Wang, Y., Eck, P. K., Song, V., Koh, W. S., y Levine, M. (2001). Vitamin C: from molecular actions to optimum intake. En E. Cadenas y L. Packer (Eds.). Handbook of antioxidants (pp. 117-145). CRC Press.

Parra, Q. R. A., Becerril, R. A. E., López, C. C. (2002). Transpiración, resistencia estomática y potenciales en manzano ‘golden delicious’ injertado sobre portainjertos clonales. Terra Latinoamericana, 20. Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México.

Peris-Felipo, F. J., Benavent-Gil, Y., y Hernández-Apaolaza, L. (2020). Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiology and Biochemistry, 152, 23-31. https://doi.org/10.1016/j.plaphy.2020.04.026

Romero, R.C.O. (2011). Fertilización orgánica-mineral en el cultivo de fresa, y evaluación de sustratos para la producción de lombriz (Eisenia foetida Sav.). [Colegio de Postgraduados. Tesis de Posgrado].

Reganold, J. P., Andrews, P. K., Reeve, J. R., Carpenter-Boggs, L., Schadt, C. W., Alldredge, J. R., … Zhou, J. (2010). Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE, 5(9), 1–14. https://doi.org/10.1371/journal.pone.0012346.

Reis, T. H. P., Guimarães, P. T. G., Figueiredo, F. C., Pozza, A. A. A., Nogueira, F. D., Rodrigues, C. R. (2007). O silício na nutrição e defesa de plantas. EPAMIG.

Sahana, B. J., Madaiah, D., Sridhara, S., Pradeep, S., y Nithin, K. M. (2020). Study on Effect of Organic Manures on Quality and Biochemical Traits of Strawberry (Fragaria×ananassa Duch.) under Naturally Ventilated Polyhouse. International Journal of Current Microbiology and Applied Sciences, 9(10), 2692-2698. https://doi.org/10.20546/ijcmas.2020.910.325

Sociedad Mexicana de Producción Orgánica. (2017). Situación mundial de la producción orgánica y perspectivas de la producción orgánica en México. http://www.somas.org.mx/wp-content/uploads/2019/01/LIBRO-DIGITAL-DE-AGRICULTURA-SOSTENIBLE-2017-1.pdf

Sephu, S. A. (2009). El silicio (Si) como elemento fertilizante y protector de enfermedades y plagas. SEPHU. https://www.interempresas.net/FeriaVirtual/Catalogos_y_documentos/81972/028---15.05.09---El-Silicio-como-fertilizante-y-fungicida.pdf

SIAP-SADER (2019). Producción Orgánica. https://www.gob.mx/cms/uploads/attachment/file/564356/2020_Utilidad_de_Frontera_Agricola_en_el_estado_de_Chihuahua.pdf

SIAP-SADER (2020). Panorama Agroalimentario 2020. https://www.inforural.com.mx/wp-content/uploads/2020/11/Atlas-Agroalimentario-2020.pdf

Singleton, R. Orthofer, y R. Lamuela. (1999). Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology. En L. Packer, N. Kaplan, S. Fleischer, y S. Colowick (Eds.). Methods in enzymology (pp. 152-178). https://doi.org/10.1016/S0076-6879(99)99017-1

Steiner, A. A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134-154. https://doi.org/10.1007/BF01347224

Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damiao, V., y Junior, G. S. de S. (2020). Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in sorghum plants. Journal of Soil Science and Plant Nutrition, 1-10.

Terrazzan, P., Aguila, J. S., Heiffig, L. S., y Kluge, R. A. (2006). Physicochemical characterization of refrigerated strawberries conventional and organic crop systems. Revista Ibero-Americana de Tecnología Postcosecha, 8, 33-37.

Tripathi, P., Na, C. I., y Kim, Y. (2021). Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.). European Journal of Agronomy, 122(September 2020), 126172. https://doi.org/10.1016/j.eja.2020.126172

Valentinuzzi, F., Cologna, K., Pii, Y., Mimmo, T., y Cesco, S. (2018). Assessment of silicon biofortification and its effect on the content of bioactive compounds in strawberry (Fragaria × ananassa ‘Elsanta’) fruits. Acta Horticulturae, 1217, 307–312. https://doi.org/10.17660/ActaHortic.2018.1217.38

Verlag, C. (1988). Fertilizantes y fertilización. Editorial REVERTE.

Vega, I., Nikolic, M., Pontigo, S., Godoy, K., Mora, M. D. L. L., y Cartes, P. (2019). Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy, 9, 388.

Viencz, T., Santana, K., Ayub, R. A., y Botelho, R. V. (2021). Development, photosynthesis, and yield of blueberry cultivar ‘Climax’ growth with different substrates and nitrogen fertilization under protected cultivation. Ciencia rural, 51(6), 1-10. https://doi.org/10.1590/0103-8478cr20190367

Weber, N., Schmitzer, V., Jakopic, J., y Stampar, F. (2018). First fruit in season: seaweed extract and silicon advance organic strawberry (Fragaria×ananassa Duch.) fruit formation and yield. Scientia Horticulturae, 242, 103-109. https://doi.org/10.1016/j.scienta.2018.07.038

Yaghubi, K., Vafaee, Y., Ghaderi, N., y Javadi, T. (2019). Potassium Silicate Improves Salinity Resistant and Affects Fruit Quality in Two Strawberry Cultivars Grown Under Salt Stress. Communications in Soil Science and Plant Analysis, 50(12), 1439-1451. https://doi.org/10.1080/00103624.2019.1621333

Zuo, Y., Zhang, J., Zhao, R., Dai, H., y Zhang, Z. (2018). Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging, and soil enzymatic activity. Scientia Horticulturae, 233(January), 132–140.

Zhang, Y., Yu, S., Gong, H-j., Zhao, H-l., Li, H-l., Hu, Y-h., et al. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17, 2151–2159.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia