Anticorrosive protection of natural rust converter (Mimosa tenuiflora) applied on corrosion products of AISI 1018 steel
PDF (Español (España))

Keywords

corrosión
óxido
óxido natural
recubrimientos
protección ambiental
anticorrosión
convertidor
Mimosa tenuiflora
acero 1018
convertidores
patrimonio cultural metálico corrosion
rust
natural rust
coating
steel
protection
anticorrosion
converter
Mimosa tenuiflora
1018 steel
converters
metallic cultural heritage

How to Cite

Arceo-Gómez, D. E. ., Reyes Trujeque, J. ., Galván Martínez, R. ., & Orozco Cruz, R. . (2021). Anticorrosive protection of natural rust converter (Mimosa tenuiflora) applied on corrosion products of AISI 1018 steel. Nova Scientia, 13(27). https://doi.org/10.21640/ns.v13i27.3021

Abstract

A primary coating is one that is applied on the surface of the steels as a first coating layer that allows better adherence and sealing of the protective systems. However, some of its components are toxic for the environment and harmful to the health of those who use them. An alternative that has been explored in recent years, which can be environmentally friendly, is the use of oxide converters obtained from natural plant extracts. Their use can have a strong impact in the industrial field and they show promise in the conservation of metallic cultural heritage. In this work, the anticorrosive effect of an rust converter obtained from an extract of the Mimosa tenuiflora plant applied on corrosion products of a 1018 steel was evaluated. The morphological characterization of the rust converter was carried out by Scanning Electronic Microscopy (SEM). On the other hand, the anticorrosive properties were evaluated by Electrochemical Impedance Spectroscopy (EIE).

Method: AISI 1018 steel substrates were used and two surface cleaning treatments were applied: chemical pickling and sandblasting. Subsequently, to form corrosion products, the coupons were exposed for 90 days to the urban-marine atmosphere of the city of Boca del Río, Veracruz. The extract used as a rust converter was obtained from the Mimosa tenuiflora plant and two formulations were prepared that were applied by spraying on the layer of corrosion products. The corrosion products were characterized by Raman Spectroscopy, X-Ray Diffraction (XRD) and SEM-EDX. For its part, the morphology of the converted film was characterized by SEM. The anticorrosive properties of the corrosion products and the oxide converter were evaluated by EIS during 24 hours of exposure in a 3.5 % NaCl solution.

Results: The corrosion product layer consists mainly of goethite, lepidocrocite and hematite. By SEM, changes in the morphological characteristics of the corrosion products were observed, which change their rough and porous surface appearance to that of a compact and cracked surface due to the action of the rust converter. The results by EIE showed that the sandblasting treatment on the specimens allowed a better adherence of the corrosion products and rust converter, favoring an increase in the protective capacity compared to the surface treatment by chemical pickling.

Discussion or Conclusion: Natural rust converter improves the protective properties of the corrosion product layer. In addition to the above, a surface preparation of the substrate with sandblasting allowed better adhesion of the rust converter. This rust converter can be used in industrial environment and metallic cultural heritage.

https://doi.org/10.21640/ns.v13i27.3021
PDF (Español (España))

References

Alcántara, J., Chico, B., Díaz, I., De la Fuente, D., y Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corrosion Science, 97, 74-88. DOI: https://doi.org/10.1016/j.corsci.2015.04.015

Antunes, R. A., Costa, I., y Faria, D. L. A. D. (2003). Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Materials Research, 6(3), 403-408. DOI: https://doi.org/10.1590/S1516-14392003000300015

Arceo Gómez, D. E., Aguilar, J. C., Reyes, J., Galván Martínez, R., & Orozco-Cruz, R. (2019). Electrochemical Analysis of a SiO2 Film on Alternative Rust Converter to Preserve Ferrous Alloys in Historical Heritage. ECS Transactions, 94(1), 229. DOI: https://doi.org/10.1149/09401.0229ecst

ASTM Standard A48/A48M-03 (Reapproved 2012). (2012). Standard Specification for Gray Iron Castings.

ASTM G1-03. (2017). Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens.

Barrero, C. A., Ocampo, L. M., y Arroyave, C. E. (2001). Possible improvements in the action of some rust converters. Corrosion Science, 43(6), 1003-1018. DOI: https://doi.org/10.1016/S0010-938X(00)00139-6

Božović, S., Gvozdanović, T., Kraš, A., Grudić, V., Kurajica, S., y Martínez, S. (2020). Rust layer growth and modification by a tannin-based mixture for lowering steel corrosion rates in neutral saline solution. Corrosion Engineering, Science and Technology, 55(5), 372-380. DOI: https://doi.org/10.1080/1478422X.2020.1734739

Byrne, C., D’Alessandro, O., Selmi, G. J., Romagnoli, R., y Deyá, C. (2019). Primers based on tara and quebracho tannins for poorly prepared steel surfaces. Progress in Organic Coatings, 130, 244-250. DOI: https://doi.org/10.1016/j.porgcoat.2019.02.003

Collazo, A., Nóvoa, X. R., Pérez, C., y Puga, B. (2008). EIS study of the rust converter effectiveness under different conditions. Electrochimica Acta, 53(25), 7565-7574. DOI: https://doi.org/10.1016/j.electacta.2007.11.078

Chaparro, W. A. A., Ruiz, J. H. B., y Rivera, W. G. (2011). Identificación de productos de corrosión en aceros embebidos en concretos alternativos inmersos en NaCl 3.5 %. Avances: Investigacion en Ingeniería, 8(1), 32-39. Recuperado de: Identificación de productos de corrosión en aceros embebidos en concretos alternativos inmersos en NaCl 3.5% - Dialnet (unirioja.es)

Criado, M., Martínez-Ramírez, S., y Bastidas, J. M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials, 96, 383-390. DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.034

De Faria, D. L., Venâncio Silva, S., y De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28(11), 873-878. DOI:https://doi.org/10.1002/(SICI)1097-4555(199711)28:11%3C873::AID-JRS177%3E3.0.CO;2-B

De la Fuente, D., Alcántara, J., Chico, B., Díaz, I., Jiménez, J. A., y Morcillo, M. (2016). Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques. Corrosion Science, 110, 253-264. doi: https://doi.org/10.1016/j.corsci.2016.04.034

Ding, L., y Poursaee, A. (2017). The impact of sandblasting as a surface modification method on the corrosion behavior of steels in simulated concrete pore solution. Construction and Building Materials, 157, 591-599. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.140

Dillmann, P., Mazaudier, F., y Hœrlé, S. (2004). Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corrosion Science, 46(6), 1401-1429. DOI: https://doi.org/10.1016/j.corsci.2003.09.027

Favre, M., & Landolt, D. (1993). The influence of gallic acid on the reduction of rust on painted steel surfaces. Corrosion Science, 34(9), 1481-1494. DOI: https://doi.org/10.1016/0010-938X(93)90243-A

Favre, M., Landolt, D., Hoffman, K., & Stratmann, M. (1998). Influence of gallic acid on the phase transformation in iron oxide layers below organic coatings studied with Moessbauer spectroscopy. Corrosion Science, 40(4-5), 793-803. DOI: https://doi.org/10.1016/S0010-938X(98)00001-8

Feng, Y., Ge, S., Li, J., Li, S., Zhang, H., Chen, Y., y Guo, Z. (2017). Synthesis of 3, 4, 5-trihydroxy-2-[(hydroxyimino) methyl] benzoic acid as a novel rust converter. Green Chemistry Letters and Reviews, 10(4), 455-461. DOI: https://doi.org/10.1080/17518253.2017.1400590

Feliu, S., Galván, J. C., Feliu Jr., S., Bastidas, J. M., Simancas, J., Morcillo, M., y Almeida, E. M. (1993). An electrochemical impedance study of the behaviour of some pretreatments applied to rusted steel surfaces. Corrosion Science, 35(5-8), 1351-1358. DOI: https://doi.org/10.1016/0010-938X(93)90357-M

Geng, S., Sun, J., y Guo, L. (2015). Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel. Materials & Design, 88, 1-7. DOI: https://doi.org/10.1016/j.matdes.2015.08.113

Jaramillo, A. F., Montoya, L. F., Prabhakar, J. M., Sanhueza, J. P., Fernández, K., Rohwerder, M., y Melendrez, M. F. (2019). Formulation of a multifunctional coating based on polyphenols extracted from the Pine radiata bark and functionalized zinc oxide nanoparticles: Evaluation of hydrophobic and anticorrosive properties. Progress in Organic Coatings, 135, 191-204. DOI: https://doi.org/10.1016/j.porgcoat.2019.06.011

Legodi, M. A., y de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, 74(1), 161-168. DOI: https://doi.org/10.1016/j.dyepig.2006.01.038

Li, J., Ge, S., Wang, J., Du, H., Song, K., Fei, Z., ... y Guo, Z. (2018). Water-based rust converter and its polymer composites for surface anticorrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537, 334-342. DOI: https://doi.org/10.1016/j.colsurfa.2017.10.041

Matamala, G., Smeltzer, W., y Droguett, G. (1994). Use of tannin anticorrosive reaction primer to improve traditional coating systems. Corrosion, 50(4), 270-275. DOI: https://doi.org/10.5006/1.3294333

Morteo-Flores, A. O., Galván-Martínez, R., Fernández-Gómez, I., y Orozco-Cruz, R. (2018). Assessing Mimosa Tenuiflora Extract as Rust Converter on Iron Corrosion Products. ECS Transactions, 84(1), 341. DOI: https://doi.org/10.1149/08401.0341ecst

Ocampo, L. M., Margarit, I. C. P., Mattos, O. R., Córdoba-de-Torresi, S. I., y Fragata, F. L. (2004). Performance of rust converter based in phosphoric and tannic acids. Corrosion Science, 46(6), 1515-1525. DOI: https://doi.org/10.1016/j.corsci.2003.09.021

Ramanaidou, E. M. I. C., Wells, M., Lau, I., y Laukamp, C. (2015). Characterization of iron ore by visible and infrared reflectance and, Raman spectroscopies. In Iron ore (pp. 191-228). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-1-78242-156-6.00006-X

Ross, T. K., y Francis, R. A. (1978). The treatment of rusted steel with mimosa tannin. Corrosion Science, 18(4), 351-361. DOI: https://doi.org/10.1016/S0010-938X(78)80049-3

Saji, V. S. (2019). Progress in rust converters. Progress in Organic Coatings, 127, 88-99. DOI: https://doi.org/10.1016/j.porgcoat.2018.11.013

Sancy, M., Gourbeyre, Y., Sutter, E. M. M., y Tribollet, B. (2010). Mechanism of corrosion of cast iron covered by aged corrosion products: Application of electrochemical impedance spectrometry. Corrosion Science, 52(4), 1222-1227. DOI: https://doi.org/10.1016/j.corsci.2009.12.026

Surface, J. Preparation Standard NACE No (Vol. 5). 1/SSPC-SP.

Vetere, V. F., y Romagnoli, R. (1998). Chemical and electrochemical assessment of tannins and aqueous primers containing tannins. Surface Coatings International, 81(8), 385-391. DOI: https://doi.org/10.1007/BF02693869

Xu, W., Han, E. H., y Wang, Z. (2019). Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. Journal of Materials Science & Technology, 35(1), 64-75. DOI: https://doi.org/10.1016/j.jmst.2018.09.001

Zhao, X. D., Cheng, Y. F., Fan, W., Vladimir, C., Volha, V., y Alla, T. (2014). Inhibitive performance of a rust converter on corrosion of mild steel. Journal of Materials Engineering and Performance, 23(11), 4102-4108. DOI: https://doi.org/10.1007/s11665-014-1199-x

Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X., y Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42-. Engineering Failure Analysis, 18(8), 1981-1989. DOI: https://doi.org/10.1149/2.013204jes

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia