Abstract
Jackfruit (Artocarpus heterophyllus Lam.) is a climacteric fruit whit a high commercial value, but susceptible to decay. The most important pathogens for jackfruit R. stolonifer and C. gloeosporioides may interact in different ways. The objectives of this study were to examine the interaction between three fungal species isolated from jackfruit and describe their behavior and interactions as a function of temperature. Three pathogen isolates from jackfruit rots, cultivated individually or paired at 4 cm in a natural medium were used. The growth rate was evaluated at 13, 25, and 35 °C. The Baranyi-Roberts model was used to obtain the radial growth rate. Differences between the growth rate of each fungus are the reference to determine the type of interaction. The effect of temperature of the unpaired isolates was studied by Rosso-Robinson’s model. The experiment was validated by infecting fresh jackfruit whit a mix of spores of all isolates. Rhizopus stolonifer is capable of rapidly colonizing the Petri dish thus reducing the space for the other fungi. The growth rates of unpaired and paired fungal isolates were statistically different showing that interactions between them exist. Rhizopus intermingling the others at 13 and 25 °C whereas, at the same temperatures, Colletotrichum AhCx-02 dominates AhCx-03. In contrast, dominance patterns of the Colletotrichum AhCx-03 strain were higher at 35 °C.
References
Agrios, G. N. (2005) Plant Pathology. 5th. Amsterdam: Elsevier.
Amusa, N. A., Kehinde, I. A. and Ashaye, O. A. (2002) ‘Bio-deterioration of breadfruit (Artocarpus Communis) in storage and its effects on the nutrient composition’, African Journal of Biotechnology, 1(December), pp. 57–60. doi: 10.5897/AJB2002.000-010.
Arias Velázquez, C. J. and Toledo Hevia, J. (2000) Manual de manejo postcosecha de frutos tropicales (papaya, piña, plátano, cítricos), Técnicas mejoradas de postcosecha, procesamiento y comercialización de frutas. Edited by O. de las N. U. para la A. y la A. (FAO). Roma, It.
Baranyi, J. and Roberts, T. A. (1994) ‘A dynamic approach to predicting bacterial growth in food’, International journal of food microbiology, 23(3–4), pp. 277–294. doi: 10.1016/0168-1605(94)90157-0.
Barnett, H. L. and Hunter, B. B. (1998) Illustrated Genera of Imperfect Fungi. 4th ed. APS, St. Paul, Minnesota.
Bautista-Baños, S. et al. (2008) ‘Rhizopus stolonifer-Tomato interaction’, in Barka, E. Aid and Clément, C. (eds) Plant-Microbe Interactions. Kerala, India: Rerearch Signpost, pp. 269–289.
Bhunjun, C. S. et al. (2019) ‘Multigene phylogenetic characterisation of Colletotrichum artocarpicola sp. Nov. From Artocarpus heterophyllus in northern Thailand’, Phytotaxa, 418(3), pp. 273–286. doi: 10.11646/phytotaxa.418.3.3.
Carrillo, L. (2003) Los hongos de los alimentos y forrajes. Jujuy, Ar.: Universidad Nacional de Salta.
Chi, Y., Hatakka, A. and Maijala, P. (2007) ‘Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes?’, International Biodeterioration and Biodegradation, 59(1), pp. 32–39. doi: 10.1016/j.ibiod.2006.06.025.
Droby, S. and Wisniewski, M. (2018) ‘The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology’, Postharvest Biology and Technology, 140(January), pp. 107–112. doi: 10.1016/j.postharvbio.2018.03.004.
Elevitch, Craig R.; Manner, H. I. (2012) ‘Artocarpus heterophyllus Lamarck’, Edible Medicinal And Non-Medicinal Plants, 3(April), pp. 318–336. doi: 10.1007/978-94-007-2534-8.
García-Estrada, R. S. et al. (2019) ‘First Report of Rhizopus stolonifer causing fruit rot in Jackfruit (Artocarpus heterophyllus) in Mexico’, Plant Disease, 103(11), pp. 2957–2957. doi: https://doi.org/10.1094/PDIS-02-19-0395-PDN.
Ghosh, R. et al. (2015) ‘Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria’, BIOLOGICAL CONTROL, 83, pp. 29–36. doi: 10.1016/j.biocontrol.2014.12.020.
Iñiguez-Moreno, M. et al. (2020) ‘Sodium alginate coatings added with Meyerozyma caribbica : Postharvest biocontrol of Colletotrichum gloeosporioides in avocado ( Persea americana Mill. cv Hass)’, Postharvest Biology and Technology, 163(January), p. 111123. doi: 10.1016/j.postharvbio.2020.111123.
Judet-Correia, D. et al. (2010) ‘Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries’, International Journal of Food Microbiology, 142(1–2), pp. 106–113. doi: 10.1016/j.ijfoodmicro.2010.06.009.
Kolesidis, D. A. et al. (2019) ‘Predicting fungal community dynamics driven by competition for space’, Fungal Ecology, 41, pp. 13–22. doi: 10.1016/j.funeco.2019.04.003.
Li, Y. et al. (2013) ‘The inhibitory effect of Epicoccum nigrum strain XF1 against Phytophthora infestans’, Biological Control, 67(3), pp. 462–468. doi: 10.1016/j.biocontrol.2013.09.007.
Lorenzini, M. et al. (2013) ‘Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes’, Journal of Applied Microbiology, 114(3), pp. 762–770. doi: 10.1111/jam.12075.
Luna-Esquivel, G. et al. (2013) ‘La yaca (Artocarpus heterophyllus Lam.) un fruto de exportación’, Agro Productividad, pp. 65–70.
Magan, N. and Lacey, J. (1985) ‘Interactions between field, and storage fungi on wheat grain’, Transactions of the British Mycological Society, 85(1), pp. 29–37. doi: 10.1016/s0007-1536(85)80153-4.
Medina-Tiznado, M. A. et al. (2018) ‘Lasiodiplodia theobromae agente causal de la pudrición blanda de frutos de Artocarpus heterophyllus Lam. en Nayarit, México’, Revista Brasileira de Frutidultura, 40(5), pp. 1–5. doi: http://dx.doi.org /10.1590/0100-29452018018.
Nelson, S. (2005) ‘Rhizopus Rot of Jackfruit’, Plant disease, (Plant Dis.), p. PD-29.
Ochoa-Velasco, C. E. et al. (2018) ‘Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol’, Revista Argentina de Microbiologia, 50(1), pp. 70–74. doi: 10.1016/j.ram.2016.11.010.
Pitt, J. I. and Hocking, A. D. (2009) Fungi and Food Spoilage. 2nd edn. New York, USA.
Ragazzo-Sánchez, J. A. et al. (2011) ‘Molecular identification of the fungus causing postharvest rot in jackfruit’, Revista Mexicana de Micología, 34, pp. 9–15.
Ross, T. (1996) ‘Indices for performance evaluation of predictive models in food microbiology’, Journal of Appilied Bacteriology, 81, pp. 501–508.
Rosso, L., Lobry, J. R. and Flandrois, J. P. (1993) ‘An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model’, Journal of Theoretical Biology, 162(4), pp. 447–463. doi: 10.1006/jtbi.1993.1099.
Sandoval-Contreras, T. et al. (2020) ‘A predictive model for the effect of the environmental conditions on the postharvest development of Colletotrichum gloeosporioides strains isolated from papaya (Carica papaya L.) Accepted article.’, Journal of Food Protection, 80(9), pp. 1495–1504. doi: 10.1017/CBO9781107415324.004.
Sardella, D., Gatt, R. and Valdramidis, V. P. (2018) ‘Modelling the growth of pear postharvest fungal isolates at different temperatures’, Food Microbiology, 76(April), pp. 450–456. doi: 10.1016/j.fm.2018.07.010.
Sempere, F. and Santamarina, M. P. (2010) ‘Study of the interactions between Penicillium oxalicum currie & thom and Alternaria alternata (Fr.) keissler’, Brazilian Journal of Microbiology, 41(3). doi: 10.1590/S1517-83822010005000003.
Steel, C. C. et al. (2011) ‘Effect of temperature on Botrytis cinerea, Colletotrichum acutatum and Greeneria uvicola mixed fungal infection of Vitis vinifera grape berries’, Vitis, 50(2), pp. 69–71.
Teixeira, J. A. et al. (2007) ‘Papaya (Carica papaya L.) Biology and Biotechnology’, Tree and Forestry Science and Biotechnology, 1(1), pp. 47–73. doi: 10.1136/bmj.282.6264.598.
Weir, B. S., Johnston, P. R. and Damm, U. (2012) ‘The Colletotrichum gloeosporioides species complex’, Stud Mycol, 73, pp. 115–180. doi: 10.3114/sim0011.
Xu, S. et al. (2018) ‘Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel’, LWT - Food Science and Technology, 90, pp. 577–582. doi: 10.1016/j.lwt.2018.01.007.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia