A new model to analyze urban flood risk. Case study: Veracruz, Mexico
PDF

Keywords

inundaciones urbanas
riesgo de inundaciones
peligro
vulnerabilidad ambiental
Veracruz
México
modelo de riesgo clásico
modelo de riesgo ajustado
cambio de cobertura
uso del suelo
áreas urbanas
coeficiente de correlación de Pearson
cuerpos de agua
agua
cambio climático urban flooding
flood risk
hazard
environmental vulnerability
Veracruz
Mexico
classic risk model
adjusted risk model
land use
cover change
urban areas
Pearson’s correlation coefficient
bodies of water
water
climatic change

How to Cite

Zúñiga Tovar, Ángel E., Novelo Casanova, D. A., Domínguez, C., García Benítez, M., & Piña, V. (2022). A new model to analyze urban flood risk. Case study: Veracruz, Mexico. Nova Scientia, 14(28). https://doi.org/10.21640/ns.v14i28.2956

Abstract

Due to their frequency and magnitude, urban floods affect different regions of the world. For this reason, several methodologies integrate information on hazard (H) and vulnerability (V) using a «Classic» Risk (R) model for risk analysis. However, this combination of variables generally overestimates the risk in places where the frequency of flooding is low. In this work we propose a model that we call «Adjusted Risk» (AR) that integrates values ​​of urban proximity (p) to bodies of water, as a tool to assess the risk of floods. The comparison between the R and AR models showed a higher efficiency of AR to reproduce the frequency of floods for 210 cities in Veracruz, while R overestimated the level of risk in cities with low frequency of floods. The correlation values ​​associated with the frequency of flood events for a period of 45 years (1970-2015), allow to establish the utility of the AR model to evaluate the risk of urban floods when using different scales of analysis.

https://doi.org/10.21640/ns.v14i28.2956
PDF

References

Aerts, J. C. (2020). Integrating agent-based approaches with flood risk models: A review and perspective. Water Security, 11, 1-9. https://doi.org/10.1016/j.wasec.2020.100076

Aguilar-Barajas, I., Sisto, N. P., Ramirez, A. I., & Magaña-Rueda, V. (2019). Building urban resilience and knowledge co-production in the face of weather hazards: flash floods in the Monterrey Metropolitan Area (Mexico). Environmental Science & Policy, 99, 37-47. https://doi.org/10.1016/j.envsci.2019.05.021

Al Baky, M. A., Islam, M., & Paul, S. (2020). Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment, 4(1), 225-244. https://doi.org/10.1007/s41748-019-00141-w

Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2019). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 101-142. https://doi.org/10.1016/j.pocean.2006.03.007

Areu-Rangel, O. S., Cea, L., Bonasia, R., & Espinosa-Echavarria, V. J. (2019). Impact of urban growth and changes in land use on river flood hazard in Villahermosa, Tabasco (Mexico). Water, 11(2), 304. https://doi.org/10.3390/w11020304

Armenta-Montero, S., López Acosta, J. C., Rodríguez-Luna, E., Ellis, E., del Amo Rodríguez, S., Gómez-Pompa, A., Mac Swiney González, Ma. C., Niembro-Rocas, A., Sánchez, O., Vázquez-Torres, M., & Velázquez-Rosas, N. (2012). La restauración ecológica como estrategia para la reducción del riesgo de desastre ante inundaciones: estudio de caso de la Cuenca del Río Coatzacoalcos. In A. Tejeda y P. Robles Barajas (Eds.). Las inundaciones de 2010 en Veracruz. Memoria social y medio físico (pp. 216-258). http://libros.uv.mx/index.php/UV/catalog/book/FC189

Bandaru, S., Sano, S., Shimizu, Y., Seki, Y., Okano, Y., Sasaki, T., Wada, H., Otsuki, T., & Ito, T. (2020). Impact of heavy rains of 2018 in western Japan: disaster-induced health outcomes among the population of Innoshima Island. Heliyon, 6(5), e03942. https://doi.org/10.1016/j.heliyon.2020.e03942

Bukvic, A., & Harrald, J. (2019). Rural versus urban perspective on coastal flooding: The insights from the US Mid-Atlantic communities. Climate Risk Management, 23, 7-18. https://doi.org/10.1016/j.crm.2018.10.004

Cazals, C., Rapinel, S., Frison, P. L., Bonis, A., Mercier, G., Mallet, C., Corgne, S., & Rudant, J. P. (2016). Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images. Remote Sensing, 8(7), 570. https://doi.org/10.3390/rs8070570

CENAPRED. (2017). Centro Nacional de Prevención de Desastres. Impacto Socioeconómico de Los Principales Desastres Ocurridos En La República Mexicana: Serie Impacto Socioeconómico de Los Desastres En México. Secretaría de Gobernación-CENAPRED. Ciudad de México, México, Volumen 1–15. Available online: https://datos.gob.mx/busca/dataset/impacto-socioeconomico-de-desastres-de-2000-a-2015

CENAPRED. (2021). Centro Nacional de Prevención de Desastres. Guía Básica para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos – Conceptos Básicos sobre Peligros, Riesgos y su Representación Geográfica. Secretaría de Gobernación-CENAPRED: Ciudad de México, México. Available online: http://www.cenapred.gob.mx/es/Publicaciones/archivos/44.pdf

Challenger, A., Dirzo, R., López, J. C., Mendoza, E., Lira-Noriega, A., & Cruz, I. (2009). Factores de cambio y estado de la biodiversidad. Capital natural de México, 2, 37-73. https://spc.conanp.gob.mx/FACTORES%20DE%20CAMBIO.pdf

Chen, Y., Wang, Y., Zhang, Y., Luan, Q., & Chen, X. (2020). Flash floods, land-use change, and risk dynamics in mountainous tourist areas: A case study of the Yesanpo Scenic Area, Beijing, China. International Journal of Disaster Risk Reduction, 50, 101873. https://doi.org/10.1016/j.ijdrr.2020.101873

CONABIO. (1998). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Subcuencas hidrológicas. Extraído de Boletín hidrológico. (1970). Subcuencas hidrológicas en Mapas de regiones hidrológicas. Escala más común 1:1000000. Secretaría de Recursos Hidráulicos, Jefatura de Irrigación y control de Ríos, Dirección de Hidrología. México. http://www.conabio.gob.mx/informacion/gis/

DesInventar. (2019). Sistema de Inventario de Desastres. https://www.desinventar.org/

Dominguez, C. & Magaña, V. (2018). The role of tropical cyclones in precipitation over the tropical and subtropical North America. Frontiers in Earth Science, 6, 19. https://doi.org/10.3389/feart.2018.00019

Duo, E.; Fernández-Montblanc, T. and Armaroli, C. (2020). Semi-probabilistic coastal flood impact analysis: From deterministic hazards to multi-damage model impacts. Environment International, 143, 105884. https://doi.org/10.1016/j.envint.2020.105884

Dykstra, S. L., & Dzwonkowski, B. (2019). The intensifying frequency of coastal flooding, northeast Gulf of Mexico watersheds. AGUFM, H53I-1876. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFM.H53I1876D

El Bastawesy, M., Gabr, S., & Mohamed, I. (2015). Assessment of hydrological changes in the Nile River due to the construction of Renaissance Dam in Ethiopia. Egyptian Journal Remote Sensing and Space Science, 18(1), 65-75. https://doi.org/10.1016/j.ejrs.2014.11.001

Erena, S. H., & Worku, H. (2019). Dynamics of land use land cover and resulting surface runoff management for environmental flood hazard mitigation: The case of Dire Daw city, Ethiopia. Journal of Hydrology: Regional Studies, 22, 100598. https://doi.org/10.1016/j.ejrh.2019.100598

Flores, A. P., Giordano, L., & Ruggerio, C. A. (2020). A basin-level analysis of flood risk in urban and periurban areas: A case study in the metropolitan region of Buenos Aires, Argentina. Heliyon, 6(8), e04517. https://doi.org/10.1016/j.heliyon.2020.e04517

FONDEN. (2019). Fideicomiso Fondo de Desastres Naturales. Declaratoria de Emergencia de Desastres. Available online: https://datos.gob.mx/busca/dataset/centro-nacional-de-prevencion-de-desastres/resource/fa17739f-83f2-424a-ac48-fea7c721ed31 (accessed on 15 January 2020)

Haer, T., Botzen, W. W., Zavala-Hidalgo, J., Cusell, C., & Ward, P. J. (2017). Economic evaluation of climate risk adaptation strategies: Cost-benefit analysis of flood protection in Tabasco, Mexico. Atmósfera, 30(2), 101-120. DOI: https://doi.org/10.20937/ATM.2017.30.02.03

Hermas, E., Gaber, A., & El Bastawesy, M. (2021). Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt. Egyptian Journal Remote Sensing and Space Science, 24(1), 119-130. https://doi.org/10.1016/j.ejrs.2020.03.002

Ignjacevic, P., Botzen, W. W., Estrada, F., Kuik, O., Ward, P. & Tiggeloven, T. (2020). CLIMRISK-RIVER: Accounting for local river flood risk in estimating the economic cost of climate change. Environmental Modelling and Software, 132, 104784. https://doi.org/10.1016/j.envsoft.2020.104784

INEGI. Instituto Nacional de Estadística y Geografía. Localidades de la República Mexicana, (2019). Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463674658 (accessed on 19 Nov 2020)

INEGI_a. Instituto Nacional de Estadística y Geografía. (2020). Conjunto de Datos Vectoriales de uso de suelo y vegetación. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 5 May 2020)

INEGI_b. Instituto Nacional de Estadística y Geografía. Hidrografía. (2020). Available online: https://www.inegi.org.mx/temas/hidrologia/#Mapa (accessed on 1Dec 2020)

Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental Science and Policy, 80, 132-143. https://doi.org/10.1016/j.envsci.2017.11.016

Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555-563. https://doi.org/10.1016/j.scitotenv.2015.08.055

Ke, Q., Tian, X., Bricker, J., Tian, Z., Guan, G., Cai, H., Huang, X., Yang, H., & Liu, J. (2020). Urban pluvial flooding prediction by machine learning approaches–a case study of Shenzhen city, China. Advances in Water Resources, 145, 103719. DOI: https://doi.org/10.1016/j.advwatres.2020.103719.

Lithgow, D., Martínez, M. L., Gallego-Fernández, J. B., Pérez-Maqueo, O., & Silva, R. (2020). Assessing the current state and restoration needs of the beaches and coastal dunes of Marismas Nacionales, Nayarit, Mexico. Ecological Indicators, 119, 106859. https://doi.org/10.1016/j.ecolind.2020.106859

López-Barrera, F., Martínez-Garza, C., & Ceccon, E. (2017). Restoration ecology in Mexico: state of the art and perspectives. Revista Mexicana de Biodiversidad, 88, 97-112. https://doi.org/10.1016/j.rmb.2017.10.001.

Magaña, V., Gómez, L., Neri, C., Landa, R., León, C., & Ávila, B. (2011). Medidas de adaptación al cambio climático en humedales del Golfo de México. México: INE, SEMARNAT, UNAM, BM, UAM. (p. 90). Available online: http://awsassets.panda.org/downloads/librohumedales_baja_julio2011.pdf

Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera, 27(4), 411-427. https://doi.org/10.1016/S0187-6236(14)70039-6

Mas, J. F., Velázquez, A., & Couturier, S. (2009). La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. Investigación ambiental, 1(1), 23-39. https://www.ccmss.org.mx/wpcontent/uploads/2014/10/La_evaluacion_de_los_cambios_de_cobertura-uso_de_suelo_en_la_Republica_Mexicana.pdf

Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103-117. https://doi.org/10.1016/j.geoforum.2017.09.008

Meza-Padilla, R., Appendini, C. M., Pedrozo-Acuña, A., & Gonzalez-Villarreal, F. (2015). Evaluation of the storm surge in data sparse sites: Panuco River, Mexico. Ribagua, 2(2), 61-70. https://doi.org/10.1016/j.riba.2015.09.001

Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006

Mohanty, M. P., Vittal, H., Yadav, V., Ghosh, S., Rao, G. S., & Karmakar, S. (2020). A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. Journal of environmental management, 255, 109733. https://doi.org/10.1016/j.jenvman.2019.109733

Munich RE, NatCatService. (2016). Available online: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html

Nkwunonwo, U. C.; Whitworth, M. and Baily, B. (2020). A review of the current status of flood modelling for urban flood risk management in the developing countries. Scientific African, 7. e00269. https://doi.org/10.1016/j.sciaf.2020.e00269

Ochoa-Rodríguez, S., Wang, L. P., Gires, A., Pina, R. D., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaytan, S., Cristiano, E., van Assel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B. Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P. & ten Veldhuis, M. C. (2015). Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. Journal Hydrology, 531, 389-407. https://doi.org/10.1016/j.jhydrol.2015.05.035

Pérez-Maqueo, O., Martínez, M. L., Sánchez-Barradas, F. C., & Kolb, M. (2018). Assessing nature-based coastal protection against disasters derived from extreme hydrometeorological events in Mexico. Sustainability, 10(5), 1317. https://doi.org/10.3390/su10051317

Pistrika, A., & Tsakiris, G. (2007). Flood risk assessment: A methodological framework. Water Resources Management: New Approaches and Technologies. European Water Resources Association, Chania, Crete-Greece.

Poku-Boansi, M.; Amoako, C.; Owusu-Ansah, J. K.; Cobbinah, P. B. (2020). What the state does but fails: Exploring smart options for urban flood risk management in informal Accra, Ghana. City and Environment Interactions, 5, 100038. https://doi.org/10.1016/j.cacint.2020.100038

Quirogaa, V. M.; Kurea, S.; Udoa, K. and Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33. https://doi.org/10.1016/j.riba.2015.12.001

Rana, I. A., & Routray, J. K. (2018). Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Natural Hazards, 91(1), 239-266. https://doi.org/10.1007/s11069-017-3124-8

Ritter, J.; Berenguer, M.; Corral, C.; Park, S. and Sempere-Torres, D. (2020). ReAFFIRM: Real-time assessment of flash flood impacts–a regional high-resolution method. Environment International, 136, 105375. https://doi.org/10.1016/j.envint.2019.105375

Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, JM.; Lashford, C.; Cai, YP.; Lin PZ. and Tait, S. (2019). Urban and river flooding: Comparison of flood risk management approaches in the UK and China And an assessment of future knowledge needs. Water Science and Engineering, 12(4), 274-283. https://doi.org/10.1016/j.wse.2019.12.004

Salack, S.; Saley, I. A.; Lawson, N. Z.; Zabré, I. and Daku, E. K. (2018). Scales for rating heavy rainfall events in the West African Sahel. Weather and Climate Extremes, 21, 36-42. https://doi.org/10.1016/j.wace.2018.05.004

Sarukhán, J.; Urquiza-Haas, T.; Koleff, P.; Carabias, J.; Dirzo, R.; Ezcurra, E.; ... and Soberón, J. (2015). Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. BioScience, 65(2), 164-173. https://doi.org/10.1093/biosci/biu195

Shrestha, S. and Lohpaisankrit, W. (2017). Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand. International Journal of Sustainable Built Environment, 6(2), 285-298. https://doi.org/10.1016/j.ijsbe.2016.09.006

Shrestha, B. B. and Kawasaki, A. (2020). Quantitative assessment of flood risk with evaluation of the effectiveness of dam operation for flood control: A case of the Bago River Basin of Myanmar. International Journal of Disaster Risk Reduction, 50, 101707. https://doi.org/10.1016/j.ijdrr.2020.101707

Singh, R. K.; Villuri, V. G. K.; Pasupuleti, S. and Nune, R. (2020). Hydrodynamic modeling for identifying flood vulnerability zones in lower Damodar river of eastern India. Ain Shams Engineering Journal, 11(4), 1035-1046. https://doi.org/10.1016/j.asej.2020.01.011

SMN. Servicio Meteorológico Nacional. Información Estadística Climatológica. (2019). Available online:https://smn.conagua.gob.mx/es/climatologia/informacionclimatologica/informacion-estadistica-climatologica (accessed on 16 May 2020)

Solín, Ľ.; Feranec, J. and Nováček, J. (2011). Land cover changes in small catchments in Slovakia during 1990–2006 and their effects on frequency of flood events. Natural Hazards, 56(1), 195-214. https://doi.org/10.1007/s11069-010-9562-1

Tarigan, S. D. (2016). Land cover change and its impact on flooding frequency of Batanghari Watershed, Jambi Province, Indonesia. Procedia Environmental Sciences, 33, 386-392. https://doi.org/10.1016/j.proenv.2016.03.089

Tchorzewska-Cieslak, B., Pietrucha-Urbanik, K., & Zygmunt, A. (2018). Implementation of matrix methods in flood risk analysis and assessment. Ekonomia i Środowisko, 3.

Vázquez-González, C., Moreno-Casasola, P., Peláez, L. A. P., Monroy, R., and Espejel, I. (2019). The value of coastal wetland flood prevention lost to urbanization on the coastal plain of the Gulf of Mexico: An analysis of flood damage by hurricane impacts. International Journal of Disaster Risk Reduction, 37, 101180. https://doi.org/10.1016/j.ijdrr.2019.101180

Wu, J., Wu, Z. Y., Lin, H. J., Ji, H. P., & Liu, M. (2020). Hydrological response to climate change and human activities: A case study of Taihu Basin, China. Water Science and Engineering, 13(2), 83-94. https://doi.org/10.1016/j.wse.2020.06.006

Xu, Z., & Zhao, G. (2016). Impact of urbanization on rainfall-runoff processes: case study in the Liangshui River Basin in Beijing, China. Proceedings of the International Association of Hydrological Sciences, 373, 7-12. https://doi.org/10.5194/piahs-373-7-2016

Zahiri, E. P., Bamba, I., Famien, A. M., Koffi, A. K., & Ochou, A. D. (2016). Mesoscale extreme rainfall events in West Africa: The cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Climate Extremes, 13, 15-34. https://doi.org/10.1016/j.wace.2016.05.001

Zavala-Hidalgo, J., Romero-Centeno, R., Mateos-Jasso, A., Morey, S. L., & Martínez-López, B. (2014). The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera, 27(3), 317-334. https://doi.org/10.1016/S0187-6236(14)71119-1

Zúñiga, E., & Magaña, V. (2018). Vulnerability and risk to intense rainfall in Mexico: The effect of land use cover change. Investigaciones Geográficas, 95, 1-18. https://doi.org/10.14350/rig.59465

Zúñiga, E., Magaña, V., and Piña, V. (2020). Effect of Urban Development in Risk of Floods in Veracruz, Mexico. Geosciences, 10(10), 402. https://doi.org/10.3390/geosciences10100402

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia