Abstract
Due to their frequency and magnitude, urban floods affect different regions of the world. For this reason, several methodologies integrate information on hazard (H) and vulnerability (V) using a «Classic» Risk (R) model for risk analysis. However, this combination of variables generally overestimates the risk in places where the frequency of flooding is low. In this work we propose a model that we call «Adjusted Risk» (AR) that integrates values of urban proximity (p) to bodies of water, as a tool to assess the risk of floods. The comparison between the R and AR models showed a higher efficiency of AR to reproduce the frequency of floods for 210 cities in Veracruz, while R overestimated the level of risk in cities with low frequency of floods. The correlation values associated with the frequency of flood events for a period of 45 years (1970-2015), allow to establish the utility of the AR model to evaluate the risk of urban floods when using different scales of analysis.
References
Aerts, J. C. (2020). Integrating agent-based approaches with flood risk models: A review and perspective. Water Security, 11, 1-9. https://doi.org/10.1016/j.wasec.2020.100076
Aguilar-Barajas, I., Sisto, N. P., Ramirez, A. I., & Magaña-Rueda, V. (2019). Building urban resilience and knowledge co-production in the face of weather hazards: flash floods in the Monterrey Metropolitan Area (Mexico). Environmental Science & Policy, 99, 37-47. https://doi.org/10.1016/j.envsci.2019.05.021
Al Baky, M. A., Islam, M., & Paul, S. (2020). Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment, 4(1), 225-244. https://doi.org/10.1007/s41748-019-00141-w
Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2019). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 101-142. https://doi.org/10.1016/j.pocean.2006.03.007
Areu-Rangel, O. S., Cea, L., Bonasia, R., & Espinosa-Echavarria, V. J. (2019). Impact of urban growth and changes in land use on river flood hazard in Villahermosa, Tabasco (Mexico). Water, 11(2), 304. https://doi.org/10.3390/w11020304
Armenta-Montero, S., López Acosta, J. C., Rodríguez-Luna, E., Ellis, E., del Amo Rodríguez, S., Gómez-Pompa, A., Mac Swiney González, Ma. C., Niembro-Rocas, A., Sánchez, O., Vázquez-Torres, M., & Velázquez-Rosas, N. (2012). La restauración ecológica como estrategia para la reducción del riesgo de desastre ante inundaciones: estudio de caso de la Cuenca del Río Coatzacoalcos. In A. Tejeda y P. Robles Barajas (Eds.). Las inundaciones de 2010 en Veracruz. Memoria social y medio físico (pp. 216-258). http://libros.uv.mx/index.php/UV/catalog/book/FC189
Bandaru, S., Sano, S., Shimizu, Y., Seki, Y., Okano, Y., Sasaki, T., Wada, H., Otsuki, T., & Ito, T. (2020). Impact of heavy rains of 2018 in western Japan: disaster-induced health outcomes among the population of Innoshima Island. Heliyon, 6(5), e03942. https://doi.org/10.1016/j.heliyon.2020.e03942
Bukvic, A., & Harrald, J. (2019). Rural versus urban perspective on coastal flooding: The insights from the US Mid-Atlantic communities. Climate Risk Management, 23, 7-18. https://doi.org/10.1016/j.crm.2018.10.004
Cazals, C., Rapinel, S., Frison, P. L., Bonis, A., Mercier, G., Mallet, C., Corgne, S., & Rudant, J. P. (2016). Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images. Remote Sensing, 8(7), 570. https://doi.org/10.3390/rs8070570
CENAPRED. (2017). Centro Nacional de Prevención de Desastres. Impacto Socioeconómico de Los Principales Desastres Ocurridos En La República Mexicana: Serie Impacto Socioeconómico de Los Desastres En México. Secretaría de Gobernación-CENAPRED. Ciudad de México, México, Volumen 1–15. Available online: https://datos.gob.mx/busca/dataset/impacto-socioeconomico-de-desastres-de-2000-a-2015
CENAPRED. (2021). Centro Nacional de Prevención de Desastres. Guía Básica para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos – Conceptos Básicos sobre Peligros, Riesgos y su Representación Geográfica. Secretaría de Gobernación-CENAPRED: Ciudad de México, México. Available online: http://www.cenapred.gob.mx/es/Publicaciones/archivos/44.pdf
Challenger, A., Dirzo, R., López, J. C., Mendoza, E., Lira-Noriega, A., & Cruz, I. (2009). Factores de cambio y estado de la biodiversidad. Capital natural de México, 2, 37-73. https://spc.conanp.gob.mx/FACTORES%20DE%20CAMBIO.pdf
Chen, Y., Wang, Y., Zhang, Y., Luan, Q., & Chen, X. (2020). Flash floods, land-use change, and risk dynamics in mountainous tourist areas: A case study of the Yesanpo Scenic Area, Beijing, China. International Journal of Disaster Risk Reduction, 50, 101873. https://doi.org/10.1016/j.ijdrr.2020.101873
CONABIO. (1998). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Subcuencas hidrológicas. Extraído de Boletín hidrológico. (1970). Subcuencas hidrológicas en Mapas de regiones hidrológicas. Escala más común 1:1000000. Secretaría de Recursos Hidráulicos, Jefatura de Irrigación y control de Ríos, Dirección de Hidrología. México. http://www.conabio.gob.mx/informacion/gis/
DesInventar. (2019). Sistema de Inventario de Desastres. https://www.desinventar.org/
Dominguez, C. & Magaña, V. (2018). The role of tropical cyclones in precipitation over the tropical and subtropical North America. Frontiers in Earth Science, 6, 19. https://doi.org/10.3389/feart.2018.00019
Duo, E.; Fernández-Montblanc, T. and Armaroli, C. (2020). Semi-probabilistic coastal flood impact analysis: From deterministic hazards to multi-damage model impacts. Environment International, 143, 105884. https://doi.org/10.1016/j.envint.2020.105884
Dykstra, S. L., & Dzwonkowski, B. (2019). The intensifying frequency of coastal flooding, northeast Gulf of Mexico watersheds. AGUFM, H53I-1876. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFM.H53I1876D
El Bastawesy, M., Gabr, S., & Mohamed, I. (2015). Assessment of hydrological changes in the Nile River due to the construction of Renaissance Dam in Ethiopia. Egyptian Journal Remote Sensing and Space Science, 18(1), 65-75. https://doi.org/10.1016/j.ejrs.2014.11.001
Erena, S. H., & Worku, H. (2019). Dynamics of land use land cover and resulting surface runoff management for environmental flood hazard mitigation: The case of Dire Daw city, Ethiopia. Journal of Hydrology: Regional Studies, 22, 100598. https://doi.org/10.1016/j.ejrh.2019.100598
Flores, A. P., Giordano, L., & Ruggerio, C. A. (2020). A basin-level analysis of flood risk in urban and periurban areas: A case study in the metropolitan region of Buenos Aires, Argentina. Heliyon, 6(8), e04517. https://doi.org/10.1016/j.heliyon.2020.e04517
FONDEN. (2019). Fideicomiso Fondo de Desastres Naturales. Declaratoria de Emergencia de Desastres. Available online: https://datos.gob.mx/busca/dataset/centro-nacional-de-prevencion-de-desastres/resource/fa17739f-83f2-424a-ac48-fea7c721ed31 (accessed on 15 January 2020)
Haer, T., Botzen, W. W., Zavala-Hidalgo, J., Cusell, C., & Ward, P. J. (2017). Economic evaluation of climate risk adaptation strategies: Cost-benefit analysis of flood protection in Tabasco, Mexico. Atmósfera, 30(2), 101-120. DOI: https://doi.org/10.20937/ATM.2017.30.02.03
Hermas, E., Gaber, A., & El Bastawesy, M. (2021). Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt. Egyptian Journal Remote Sensing and Space Science, 24(1), 119-130. https://doi.org/10.1016/j.ejrs.2020.03.002
Ignjacevic, P., Botzen, W. W., Estrada, F., Kuik, O., Ward, P. & Tiggeloven, T. (2020). CLIMRISK-RIVER: Accounting for local river flood risk in estimating the economic cost of climate change. Environmental Modelling and Software, 132, 104784. https://doi.org/10.1016/j.envsoft.2020.104784
INEGI. Instituto Nacional de Estadística y Geografía. Localidades de la República Mexicana, (2019). Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463674658 (accessed on 19 Nov 2020)
INEGI_a. Instituto Nacional de Estadística y Geografía. (2020). Conjunto de Datos Vectoriales de uso de suelo y vegetación. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 5 May 2020)
INEGI_b. Instituto Nacional de Estadística y Geografía. Hidrografía. (2020). Available online: https://www.inegi.org.mx/temas/hidrologia/#Mapa (accessed on 1Dec 2020)
Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental Science and Policy, 80, 132-143. https://doi.org/10.1016/j.envsci.2017.11.016
Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555-563. https://doi.org/10.1016/j.scitotenv.2015.08.055
Ke, Q., Tian, X., Bricker, J., Tian, Z., Guan, G., Cai, H., Huang, X., Yang, H., & Liu, J. (2020). Urban pluvial flooding prediction by machine learning approaches–a case study of Shenzhen city, China. Advances in Water Resources, 145, 103719. DOI: https://doi.org/10.1016/j.advwatres.2020.103719.
Lithgow, D., Martínez, M. L., Gallego-Fernández, J. B., Pérez-Maqueo, O., & Silva, R. (2020). Assessing the current state and restoration needs of the beaches and coastal dunes of Marismas Nacionales, Nayarit, Mexico. Ecological Indicators, 119, 106859. https://doi.org/10.1016/j.ecolind.2020.106859
López-Barrera, F., Martínez-Garza, C., & Ceccon, E. (2017). Restoration ecology in Mexico: state of the art and perspectives. Revista Mexicana de Biodiversidad, 88, 97-112. https://doi.org/10.1016/j.rmb.2017.10.001.
Magaña, V., Gómez, L., Neri, C., Landa, R., León, C., & Ávila, B. (2011). Medidas de adaptación al cambio climático en humedales del Golfo de México. México: INE, SEMARNAT, UNAM, BM, UAM. (p. 90). Available online: http://awsassets.panda.org/downloads/librohumedales_baja_julio2011.pdf
Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera, 27(4), 411-427. https://doi.org/10.1016/S0187-6236(14)70039-6
Mas, J. F., Velázquez, A., & Couturier, S. (2009). La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. Investigación ambiental, 1(1), 23-39. https://www.ccmss.org.mx/wpcontent/uploads/2014/10/La_evaluacion_de_los_cambios_de_cobertura-uso_de_suelo_en_la_Republica_Mexicana.pdf
Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103-117. https://doi.org/10.1016/j.geoforum.2017.09.008
Meza-Padilla, R., Appendini, C. M., Pedrozo-Acuña, A., & Gonzalez-Villarreal, F. (2015). Evaluation of the storm surge in data sparse sites: Panuco River, Mexico. Ribagua, 2(2), 61-70. https://doi.org/10.1016/j.riba.2015.09.001
Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006
Mohanty, M. P., Vittal, H., Yadav, V., Ghosh, S., Rao, G. S., & Karmakar, S. (2020). A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. Journal of environmental management, 255, 109733. https://doi.org/10.1016/j.jenvman.2019.109733
Munich RE, NatCatService. (2016). Available online: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
Nkwunonwo, U. C.; Whitworth, M. and Baily, B. (2020). A review of the current status of flood modelling for urban flood risk management in the developing countries. Scientific African, 7. e00269. https://doi.org/10.1016/j.sciaf.2020.e00269
Ochoa-Rodríguez, S., Wang, L. P., Gires, A., Pina, R. D., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaytan, S., Cristiano, E., van Assel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B. Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P. & ten Veldhuis, M. C. (2015). Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. Journal Hydrology, 531, 389-407. https://doi.org/10.1016/j.jhydrol.2015.05.035
Pérez-Maqueo, O., Martínez, M. L., Sánchez-Barradas, F. C., & Kolb, M. (2018). Assessing nature-based coastal protection against disasters derived from extreme hydrometeorological events in Mexico. Sustainability, 10(5), 1317. https://doi.org/10.3390/su10051317
Pistrika, A., & Tsakiris, G. (2007). Flood risk assessment: A methodological framework. Water Resources Management: New Approaches and Technologies. European Water Resources Association, Chania, Crete-Greece.
Poku-Boansi, M.; Amoako, C.; Owusu-Ansah, J. K.; Cobbinah, P. B. (2020). What the state does but fails: Exploring smart options for urban flood risk management in informal Accra, Ghana. City and Environment Interactions, 5, 100038. https://doi.org/10.1016/j.cacint.2020.100038
Quirogaa, V. M.; Kurea, S.; Udoa, K. and Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33. https://doi.org/10.1016/j.riba.2015.12.001
Rana, I. A., & Routray, J. K. (2018). Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Natural Hazards, 91(1), 239-266. https://doi.org/10.1007/s11069-017-3124-8
Ritter, J.; Berenguer, M.; Corral, C.; Park, S. and Sempere-Torres, D. (2020). ReAFFIRM: Real-time assessment of flash flood impacts–a regional high-resolution method. Environment International, 136, 105375. https://doi.org/10.1016/j.envint.2019.105375
Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, JM.; Lashford, C.; Cai, YP.; Lin PZ. and Tait, S. (2019). Urban and river flooding: Comparison of flood risk management approaches in the UK and China And an assessment of future knowledge needs. Water Science and Engineering, 12(4), 274-283. https://doi.org/10.1016/j.wse.2019.12.004
Salack, S.; Saley, I. A.; Lawson, N. Z.; Zabré, I. and Daku, E. K. (2018). Scales for rating heavy rainfall events in the West African Sahel. Weather and Climate Extremes, 21, 36-42. https://doi.org/10.1016/j.wace.2018.05.004
Sarukhán, J.; Urquiza-Haas, T.; Koleff, P.; Carabias, J.; Dirzo, R.; Ezcurra, E.; ... and Soberón, J. (2015). Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. BioScience, 65(2), 164-173. https://doi.org/10.1093/biosci/biu195
Shrestha, S. and Lohpaisankrit, W. (2017). Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand. International Journal of Sustainable Built Environment, 6(2), 285-298. https://doi.org/10.1016/j.ijsbe.2016.09.006
Shrestha, B. B. and Kawasaki, A. (2020). Quantitative assessment of flood risk with evaluation of the effectiveness of dam operation for flood control: A case of the Bago River Basin of Myanmar. International Journal of Disaster Risk Reduction, 50, 101707. https://doi.org/10.1016/j.ijdrr.2020.101707
Singh, R. K.; Villuri, V. G. K.; Pasupuleti, S. and Nune, R. (2020). Hydrodynamic modeling for identifying flood vulnerability zones in lower Damodar river of eastern India. Ain Shams Engineering Journal, 11(4), 1035-1046. https://doi.org/10.1016/j.asej.2020.01.011
SMN. Servicio Meteorológico Nacional. Información Estadística Climatológica. (2019). Available online:https://smn.conagua.gob.mx/es/climatologia/informacionclimatologica/informacion-estadistica-climatologica (accessed on 16 May 2020)
Solín, Ľ.; Feranec, J. and Nováček, J. (2011). Land cover changes in small catchments in Slovakia during 1990–2006 and their effects on frequency of flood events. Natural Hazards, 56(1), 195-214. https://doi.org/10.1007/s11069-010-9562-1
Tarigan, S. D. (2016). Land cover change and its impact on flooding frequency of Batanghari Watershed, Jambi Province, Indonesia. Procedia Environmental Sciences, 33, 386-392. https://doi.org/10.1016/j.proenv.2016.03.089
Tchorzewska-Cieslak, B., Pietrucha-Urbanik, K., & Zygmunt, A. (2018). Implementation of matrix methods in flood risk analysis and assessment. Ekonomia i Środowisko, 3.
Vázquez-González, C., Moreno-Casasola, P., Peláez, L. A. P., Monroy, R., and Espejel, I. (2019). The value of coastal wetland flood prevention lost to urbanization on the coastal plain of the Gulf of Mexico: An analysis of flood damage by hurricane impacts. International Journal of Disaster Risk Reduction, 37, 101180. https://doi.org/10.1016/j.ijdrr.2019.101180
Wu, J., Wu, Z. Y., Lin, H. J., Ji, H. P., & Liu, M. (2020). Hydrological response to climate change and human activities: A case study of Taihu Basin, China. Water Science and Engineering, 13(2), 83-94. https://doi.org/10.1016/j.wse.2020.06.006
Xu, Z., & Zhao, G. (2016). Impact of urbanization on rainfall-runoff processes: case study in the Liangshui River Basin in Beijing, China. Proceedings of the International Association of Hydrological Sciences, 373, 7-12. https://doi.org/10.5194/piahs-373-7-2016
Zahiri, E. P., Bamba, I., Famien, A. M., Koffi, A. K., & Ochou, A. D. (2016). Mesoscale extreme rainfall events in West Africa: The cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Climate Extremes, 13, 15-34. https://doi.org/10.1016/j.wace.2016.05.001
Zavala-Hidalgo, J., Romero-Centeno, R., Mateos-Jasso, A., Morey, S. L., & Martínez-López, B. (2014). The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera, 27(3), 317-334. https://doi.org/10.1016/S0187-6236(14)71119-1
Zúñiga, E., & Magaña, V. (2018). Vulnerability and risk to intense rainfall in Mexico: The effect of land use cover change. Investigaciones Geográficas, 95, 1-18. https://doi.org/10.14350/rig.59465
Zúñiga, E., Magaña, V., and Piña, V. (2020). Effect of Urban Development in Risk of Floods in Veracruz, Mexico. Geosciences, 10(10), 402. https://doi.org/10.3390/geosciences10100402

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia