Abstract
It is known that access to mobile telecommunications, and through them to the Internet, can provide greater social well-being. Likewise, within the telecommunications sector there was a growing demand in the use and access to services. This generates the need for mobile operators to expand and increase the capacity of their telecommunications networks. In order to achieve this, it is important to analyze the strategies for increasing the capacity and coverage of the mobile infrastructure of the main mobile operators. A longitudinal analysis of the node density by geographic area was carried out at the municipal level. Likewise, the four main mobile operators with a network in Mexico were analyzed using crowdsourced data. Also, the data was filtered by LTE technology and a correspondence was made between the nodes and the frequency bands used by each operator. The operators' network capacity increase strategies and the percentage of use of the frequency bands assigned to each operator were analyzed. As a result, the main mobile network operators in Mexico have followed a similar coverage strategy. Likewise, in the analyzed data, a positive correlation was not found between node densification and the technological characteristics of the frequency bands. It is suggested to invest in new infrastructure for the deployment of new technologies, and to promote mobile coverage in rural areas. Finally, it is suggested to facilitate the leasing of bands on various frequencies that allow operators to take advantage of their technological characteristics; through costs that are aligned with the international market.
References
Altan Redes. (2020). Altán Redes: desarrollador de la Red Compartida Agenda. http://www.ift.org.mx/sites/default/files/presentacion_isabel_prieto_altan-panel_ift.pdf
Altan Redes. (2021). Our coverage. Altan Redes. https://www.altanredes.com/en/solutions-to-operators/our-coverage/
Álvarez, C. L. (2018). Telecomunicaciones y Radiodifusión en México. Santi Ediciones.
Bnamericas. (2020a). Las dos mayores empresas de torres de telecomunicaciones de México. Bnamericas, 2–5. https://www.bnamericas.com/en/news/spotlight-mexicos-2-biggest-telecom-tower-companies
Bnamericas. (2020b). Snapshot: Latin America’s main fiber backbone projects. https://www.bnamericas.com/en/features/snapshot-latin-americas-main-fiber-backbone-projects
Bravo, J. (2021). La Red Descompuesta. El Economista, 1–14. https://www.eleconomista.com.mx/opinion/La-Red-Descompuesta-20210430-0049.html
Frias, Z., Mendo, L., & Oughton, E. J. (2020). How Does Spectrum Affect Mobile Network Deployments? Empirical Analysis Using Crowdsourced Big Data. IEEE Access, 8, 190812–190821. https://doi.org/10.1109/access.2020.3031963
Ghasemi, A., & Parekh, J. (2021). Deep Learning based Localization of LTE eNodeBs from Large Crowdsourced Smartphone Datasets. IEEE Vehicular Technology Conference, 2021-April. https://doi.org/10.1109/VTC2021-Spring51267.2021.9448857
Ibarra, D. (2021). Operadores Móviles Virtuales en México 2021. Selectra, 1–7. https://selectra.mx/celular/operadores-moviles-virtuales
Instituto Federal de Telecomunicaciones [IFT]. (2017). Las Telecomunicaciones a 4 años de la Reforma Constitucional en México. http://www.ift.org.mx/sites/default/files/contenidogeneral/estadisticas/a4anosdelareforma.pdf
Instituto Federal de Telecomunicaciones [IFT]. (2019). IMT en México. 1–11. http://www.ift.org.mx/sites/default/files/imt_en_mexico_febrero_2019.pdf
Instituto Federal de Telecomunicaciones [IFT]. (2020a). Análisis sobre el mercado de Operadores Móviles Virtuales (OMVs) 2020. IFT. http://www.ift.org.mx/estadisticas/analisis-sobre-el-mercado-de-los-operadores-moviles-virtuales-omvs
Instituto Federal de Telecomunicaciones [IFT]. (2020b). Efectos y Alternativas de la Iniciativa de la Reforma a la Ley Federal de Derechos para 2021 en materia de Espectro Radioeléctrico (pp. 1–34). http://www.ift.org.mx/sites/default/files/contenidogeneral/espectro-radioelectrico/efectosyalternativasdelainiciativadereformaalaleyfederaldederechospara2021enmateriadeespectroradioel.pdf
Instituto Federal de Telecomunicaciones [IFT]. (2020c). Segundo Informe Trimestral Estadístico 2020. http://www.ift.org.mx/sites/default/files/contenidogeneral/estadisticas/ite2t2020.pdf
Instituto Federal de Telecomunicaciones [IFT]. (2021). IMT en México. http://www.ift.org.mx/sites/default/files/imt_en_mexico_2021_febrero2021.pdf
Lucas, N. (2020a). Telcel compra la banda de 3.5 GHz de Axtel y mete presión a la primera subasta de 5G en México. El Economista, 1–11. https://www.eleconomista.com.mx/empresas/Telcel-compra-la-banda-de-3.5-GHz-de-Axtel-y-mete-presion-a-la-primera-subasta-de-5G-en-Mexico-20200701-0065.html
Lucas, N. (2020b). Telefónica renuncia a sus concesiones mexicanas en las bandas de 800 MHz y PCS. El Economista, 1–13. https://www.eleconomista.com.mx/empresas/Telefonica-renuncia-a-sus-concesiones-mexicanas-en-las-bandas-de-800-MHz-y-PCS-20200101-0012.html
Martínez, C. (2020). Ante alza en precio , AT&T devuelve espectro. El Universal, 1–6. https://www.eluniversal.com.mx/cartera/ante-alza-en-precio-att-devuelve-espectro
OECD. (2020). Latin American Economic Outlook 2020: Digital Transformation for Building Back (O. Pulbishing (ed.)). https://doi.org/https://doi.org/10.1787/e6e864fb-en
Ogrenci, A. S., & Arsan, T. (2018). Transmitter source location estimation using crowd data. Computers and Electrical Engineering, 66, 127–138. https://doi.org/10.1016/j.compeleceng.2017.09.026
OpenSignal. (2019). OpenSignal: About us. https://www.opensignal.com/about/about-us
SCT. (2020). Evaluación de la Red Compartida 2020. In Gobierno de México (Vol. 53, Issue 9). https://www.gob.mx/cms/uploads/attachment/file/604427/Evaluaci_n_de_la_Red_Compartida_2020_Versi_n_FINAL_P_BLICA_.pdf
Sridhar, V., Girish, K., & Badrinarayan, M. (2021). Analysis of crowdsourced data for estimating data speeds across service areas of India. Telecommunication Systems, 76(4), 579–594. https://doi.org/10.1007/s11235-020-00736-z
Wang, H., Xie, S., Li, K., & Omair Ahmad, M. (2019). Big data-driven cellular information detection and coverage identification. Sensors (Switzerland), 19(4), 1–23. https://doi.org/10.3390/s19040937
Zeydan, E. (2021). Android vs. IOS: a comparative analysis over mobile operator infrastructures based on crowdsourced mobile dataset. Telecommunication Systems. https://doi.org/10.1007/s11235-021-00820-y
Zhang, T., Gao, J., & Cheng, J. (2017). Crowdsourced Testing Services for Mobile Apps. Proceedings - 11th IEEE International Symposium on Service-Oriented System Engineering, SOSE 2017, 75–80. https://doi.org/10.1109/SOSE.2017.28

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia