Mathematical modelling of student’s cumulative learning
PDF

Keywords

modelo estocástico
aprendizaje
proceso no-markoviano
calidad de un curso
modelos matemáticos
procesos de aprendizaje
cursos
calidad educativa
sesiones
distribución
convergencia
educación
formación
cadenas de Markov
aprendizaje exitoso
enseñanza stochastic model
learning
non-markovian process
quality of a course
mathematical models
learning processes
courses
educational quality
sessions
distribution
convergence
education
formation
Markov chains
successful learning
teaching

How to Cite

Sagaceta Mejía, A. R., Fresán Figueroa, J. A., & Martín González, E. M. (2022). Mathematical modelling of student’s cumulative learning. Nova Scientia, 14(28). https://doi.org/10.21640/ns.v14i28.2947

Abstract

In this paper we propose a model to study the learning process of one student during a course. We formulate a stochastic model based on the quality of the teacher’s class and the affinity of the student to understand the sessions, under the assumption that previous sessions have some influence in the understanding of the next sessions. The afore mentioned assumption implies that the process is not a Markov process. We derive some recursive expressions for the distribution of the number of sessions that the student comprehends. Furthermore, we study the convergence of this distribution and illustrate its speed of convergence through some numerical examples. Finally, we apply these results to propose a methodology to estimate the quality of this kind of courses.

https://doi.org/10.21640/ns.v14i28.2947
PDF

References

Bower GH. Application of a model to paired-associate learning. Psychometrika. 1961; 26(3): 255-280.

Disponible en: https://link.springer.com/article/10.1007/BF02289796

Busemeyer JR, Diederich A. Cognitive modeling. Sage; 2010.

Cajueiro DO. Enforcing social behavior in an Ising model with complex neighborhoods. Physica A: Statistical Mechanics and its Applications, 2011; 390(9):1695 – 1703. Disponible en: https://www.sciencedirect.com/science/article/pii/S0378437111000501

Chechile RA, Sloboda LN. Reformulating Markovian processes for learning and memory from a hazard function framework. Journal of Mathematical Psychology, 2014; 59: 65–81. Special Issue in Honor of William K. Estes. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0022249613000862

Coombs CH, Dawes RM, Tversky A. Mathematical psychology: An elementary introduction. 1970.

Dufresne RJ, Gerace WJ, Leonard WJ, Mestre JP, Wenk L. Classtalk: A classroom communication system for active learning. Journal of Computing in Higher Education. 1996 Mar; 7(2):3–47. Disponible en https://link.springer.com/article/10.1007/BF02948592.

Estes WK, Suppes P. Foundations of stimulus sampling theory. 1974.

Huang YM, Huang TC, Wang KT, Hwang WY. A Markov-based Recommendation Model for Exploring the Transfer of Learning on the Web. Journal of Educational Technology and Society. 2009; 12(2):144–162. Disponible en https://www.jstor.org/stable/jeductechsoci.12.2.144.

Klemm K. Nonequilibrium transitions in complex networks: A model of social interaction. Physical Review E, 2003; 67(2). Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.67.026120

Laming F, Straile R. Photoresist cleaning. Journal of The Electrochemical Society, 1973; 120(2):292.

Lee YA. Third turn position in teacher talk: Contingency and the work of teaching. Journal of Pragmatics. 2007; 39(6):1204 – 1230. Disponible en: http://www.sciencedirect.com/science/article/pii/S037821660600227X.

Levine G, Burke CJ. Mathematical model techniques for learning theories. 1972.

Li C, Liu F, Li P. Ising model of user behavior decision in network rumor propagation. Discrete Dynamics in Nature and Society. 2018 Aug; 2018:1–10. Disponible en: https://www.hindawi.com/journals/ddns/2018/5207475/.

McCroskey JC. Classroom consequences of communication apprehension. Communication Education. 1977 Jan; 26(1):27–33. Disponible en: http://dx.doi.org/10.1080/03634527709378196.

Nakayama S and Nakamura Y. A fashion model with social interaction. Physica A: Statistical Mechanics and its Applications. 2004; 337(3):625 – 634. Disponible en: http://www.sciencedirect.com/science/article/pii/S037843710400113X.

Ostilli M, Yoneki E, Leung IXY, Mendes JFF, Lió P, Crowcroft J. Ising model of rumour spreading in interacting communities. University of Cambridge, Computer Laboratory; 2010. UCAM-CL-TR-767. Disponible en: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-767.pdf.

Restle F, Greeno JG. Introduction to mathematical psychology. 1970.

Richmond VP. Communication in the classroom: Power and motivation. Communication Education. 1990 Jul; 39(3):181–195. Disponible en: http://dx.doi.org/10.1080/03634529009378801.

Roberts FS. Discrete mathematical models, with applications to social, biological, and environmental problems. 1976.

Stauffer D. Social applications of two-dimensional ising models. American Journal of Physics. 2008 Apr; 76(4):470–473. Disponible en: https://doi.org/10.1119/1.2779882

Wickens TD. Models for behavior: Stochastic processes in psychology. WH Freeman & Co Ltd; 1982.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Nova Scientia