Characterization and thermoluminescence study of gamma irradiated Tb-doped ZnO and undoped ZnO synthesized by spray pyrolysis method


ionizing radiation effects
kinetic parameters
scanning electron microscopy
Raman dispersion
X-ray diffraction
deconvolution glow curve
radiation detector efectos de la radiación ionizante
parámetros cinéticos
microscopía electrónica de barrido
dispersión Raman
difracción de rayos X
deconvolución de curvas de brillo
detector de radiación

How to Cite

Ortiz-Morales, A., García-Hipólito, M. . ., Cruz-Zaragoza, E., & Gómez-Aguilar, R. . (2021). Characterization and thermoluminescence study of gamma irradiated Tb-doped ZnO and undoped ZnO synthesized by spray pyrolysis method. Nova Scientia, 13(27).


High gamma dose-resistant undoped ZnO and Tb-doped ZnO thermoluminescent (TL) micro-phosphors were prepared by the spray pyrolysis method. Scanning electron microscopy shows crystalline rods with hexagonal morphology, (0.1-0.4 µm diameter, and about 1 µm length). Raman spectra dispersion reveals a würtzite form. Photoluminescence (PL) study of irradiated zinc oxide films indicates the generation of defects produced by gamma irradiation resulting in an increased probability of electron-hole exciton recombination. PL spectrum shows emission bands from 5D4-7Fj=6,5,4,3 transitions ascribed to Tb3+ dopant in zinc oxide phosphor. X-ray diffraction patterns for both types of films growth (undoped ZnO and Tb-doped ZnO) are typical of zinc oxide crystalline structure, with no noticeable effect of Tb ions. Dosimetric properties, for both samples, show a low TL fading signal and TL reproducibility signal for undoped ZnO and Tb-doped ZnO samples was 29 and 57 %, respectively. The kinetic parameters such as activation energy E, frequency factor s, and Rm values, were obtained by Computerized Glow Curve Deconvolution (CGCD) assuming Mixed Order Kinetic model (MOK). The results show that the MOK well described the glow curves of zinc oxide films. The heating rate effects produced a broadening of glow peak located at 420 K. For purposes like radiation detector, atomic effective number (Zeff) was obtained: 27.74 and 56.47 for undoped ZnO and Tb-doped ZnO samples, respectively. The samples were exposed to gamma radiation in a wide range of 0.25–20 kGy dose. TL properties of undoped ZnO and Tb-doped ZnO samples show that these materials could be used to detect high doses in a gamma radiation field.


Ahsanulhaq, Q., Umar, A., & Hahn, Y. B. (2007). Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology, 18(11), 115603.

Badalawa, W., Matsui, H., Osone, T., Hasuike, N., Harima, H., & Tabata, H. (2011). Correlation between structural and luminescent properties of Eu 3+ -doped ZnO epitaxial layers. Journal of Applied Physics, 109(5), 053502.

Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389–395.

Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 10(1), 013001.

Bos, A. J. J., Vijverberg, R. N. M., Piters, T. M., & McKeeve, S. W. S. (1992). Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. Journal of Physics D: Applied Physics, 25(8), 1249–1257.

Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1–2), 3–28.

Cetin, A., Kibar, R., Selvi, S., Townsend, P. D., & Can, N. (2009). Luminescence properties of Tb implanted ZnO. Physica B: Condensed Matter, 404(20), 3379–3385.

Chen, R., & Kirsh, Y. (1981). Analysis of Thermally Stimulated Processes. In Pergamon Press. ISBN: 9781483285511.

Cruz-Vázquez, C., Orante-Barrón, V. R., Grijalva-Monteverde, H., Castaño, V. M., & Bernal, R. (2007). Thermally stimulated luminescence of new ZnO–CdSO4 exposed to beta radiation. Materials Letters, 61(4–5), 1097–1100.

Cruz-Zaragoza, E., González, P. R., Azorín, J., & Furetta, C. (2011). Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor. Applied Radiation and Isotopes, 69(10), 1369–1373.

Daksh, D., & Agrawal, Y. K. (2016). Rare Earth-Doped Zinc Oxide Nanostructures: A Review. Reviews in Nanoscience and Nanotechnology, 5(1), 1–27.

Furetta, C. (2009). Handbook of Thermoluminescence. WORLD SCIENTIFIC.

Gökçe, M., Oğuz, K. F., Karalı, T., & Prokic, M. (2009). Influence of heating rate on thermoluminescence of Mg 2 SiO 4 : Tb dosimeter. Journal of Physics D: Applied Physics, 42(10), 105412.

Gomez Ros, J. ., Delgado, A., Furetta, C., & Scacco, A. (1996). Effects of simultaneous release of trapped carriers and pair production on fading in thermoluminescent materials during storage in radiation fields. Radiat Meas. 26(2), 243-251.

Goswami, L., Aggarwal, N., Singh, M., Verma, R., Vashishtha, P., Jain, S. K., Tawale, J., Pandey, R., & Gupta, G. (2020). GaN Nanotowers Grown on Si (111) and Functionalized with Au Nanoparticles and ZnO Nanorods for Highly Responsive UV Photodetectors. ACS Applied Nano Materials, 3(8), 8104–8116.

Isik, M., Yildirim, T., & Gasanly, N. M. (2016). Thermoluminescence properties of ZnO nanoparticles in the temperature range 10–300 K. Journal of Sol-Gel Science and Technology, 78(1), 76–81.

Katz, R. (1993). A track physics retrospective. Radiat. Prot. Dosimetry 47, 65-68.

Kitis, G., & Furetta, C. (2005). Simulation of competing irradiation and fading effects in thermoluminescence dosimetry. Radiation Effects and Defects in Solids, 160(7), 285–296.

Kitis, G., & Gomez-Ros, J. M. (2000). Thermoluminescence glow-curve deconvolution functions for mixed order of kinetics and continuous trap distribution. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 440(1), 224–231.

Kitis, G., & Tuyn, J. W. N. (1998). A simple method to correct for the temperature lag in TL glow-curve measurements. Journal of Physics D: Applied Physics, 31(16), 2065–2073.

Klingshirn, C. (2007). ZnO: Material, Physics and Applications. ChemPhysChem, 8(6), 782–803.

Kucuk, N., Kucuk, I., Yüksel, M., & Topaksu, M. (2016). Thermoluminescence characteristics of Zn(BO 2 ) 2 :Ce 3+ under beta irradiation. Radiation Protection Dosimetry, 168(4), 450–458.

Kumar, V., Singh, N., Mehra, R. M., Kapoor, A., Purohit, L. P., & Swart, H. C. (2013). Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films, 539, 161–165.

Larsson, L., & Katz, R. (1976). Supralinearity of thermoluminescent dosimeters. Nuclear Instruments and Methods, 138(4), 631–636.

McKeever, S. W. S. (1985). Thermoluminescence of Solids. Cambridge University Press.

de Moura, A. P., Lima, R. C., Moreira, M. L., Volanti, D. P., Espinosa, J. W. M., Orlandi, M. O., Pizani, P. S., Varela, J. A., & Longo, E. (2010). ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics, 181(15–16), 775–780.

Nehru, L. C., Swaminathan, V., & Sanjeeviraja, C. (2012). Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technology, 226, 29–33.

Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301.

U., Meléndrez, R., Chernov, V., & Barboza-Flores, M. (2006). Thermoluminescence properties of ZnO and ZnO:Yb nanophosphors. App Phys, 89, 177–183.

Pal, P. P., & Manam, J. (2013). Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods. Materials Science and Engineering: B, 178(7), 400–408.

Park, S. ., Hong, S., & Chae, Y. G. (2014). Thermoluminescence Fading in ZnO Irradiated by Beta-rays. New Physics. Sae Mulli, 6, 580–585.

Piters, T., & Bos, A. J. J. (1993). A model for the influence of defect interactions during heating on thermoluminescence in LiF:Mg,Ti (TLD-100). Appl Phys, 26, 2255–2265.

Rajendraprasad, M., Spriya, V., Sugiyama, M., & Ramakrishna, R. K. . (2013). Investigations on ZnO:Ni Layers Deposited by Spray Pyrolysis. Hindawi Publishing Corporation, 1–5.

Radovanovic, P. V., Norberg, N. S., McNally, K. E., & Gamelin, D. R. (2002). Colloidal Transition-Metal-Doped ZnO Quantum Dots. Journal of the American Chemical Society, 124(51), 15192–15193.

Raunak Kumar Tamrakar, Neha Tiwari, R.K. Kuraria, D.P. Bisen, Vikas Dubey, Kanchan Upadhyay. Journal of Radiation Research and Applied Sciences 2015 8 1-10.

Sadek, A. M., Eissa, H. M., Basha, A. M., & Kitis, G. (2014). Resolving the limitation of the peak fitting and peak shape methods in the determination of the activation energy of thermoluminescence glow peaks. Journal of Luminescence, 146, 418–423.

Sreedharan, R. S., Krishnan, R. R., Bose, R. J., Kavitha, V. S., Suresh, S., Vinodkumar, R., Sudheer, S. K., & Pillai, V. P. M. (2017). Visible luminescence from highly textured Tb 3+ doped RF sputtered zinc oxide films. Journal of Luminescence, 184, 273–286.

Shukla, S., Agorku, E., Mittal, H., & Mishra, A. (2014). Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors. Chemical Papers, 68(2).

Sunta, C. ., Ayta, W. E. ., Chubaci, J. F. ., & Watanabe, S. (2002). General order and mixed order fits of thermoluminescence glow curves—a comparison. Radiation Measurements, 35(1), 47–57.

Tamrakar, R. K., Tiwari, N., Kuraria, R. K., Bisen, D. P., Dubey, V., & Upadhyay, K. (2015). Effect of annealing temperature on thermoluminescence glow curve for UV and gamma ray induced ZrO2:Ti phosphor. Journal of Radiation Research and Applied Sciences, 8(1), 1–10.

Umar, A., Karunagaran, B., Suh, E.-K., & Hahn, Y. B. (2006). Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology, 17(16), 4072–4077.

Waligórski, M. P. R., & Katz, R. (1980). Supralinearity of peak 5 and peak 6 in TLD-700. Nuclear Instruments and Methods, 175(1), 48–50.

Yousefi, R., Jamali-Sheini, F., & Zak, A. K. (2012). A Comparative Study of the Properties of ZnO Nano/Microstructures Grown using Two Types of Thermal Evaporation Set-Up Conditions. Chemical Vapor Deposition, 18(7–9), 215–220.

Zhao, S., Wang, L., Yang, L., & Wang, Z. (2010). Synthesis and luminescence properties of ZnO:Tb3+ nanotube arrays via electrodeposited method. Physica B: Condensed Matter, 405(15), 3200–3204.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia