Physicochemical properties of extruded ready-to-eat snack from unripe plantain blends, pineapple by-products and stevia


Ananas comosus
índice de expansión
Musa paradisiaca
plátano verde
propiedades funcionales
propiedades texturales
humedad de alimentación
aceptación sensorial
densidad aparente
índice de absorción de agua
índice de solubilidad Ananas comosus
expansion index
Musa paradisiaca
unripe banana
functional properties
feed moisture
sensory acceptance
response surface
apparent density
water absorption index
solubility index

How to Cite

Hernández-Santos, B., Juárez-Barrientos, J. M., Torruco-Uco, J. G., Ramírez-Figueroa E. ., Ramírez-Rivera, E. de J. ., a Bautista-Viazcan, V. O. ., & Rodríguez Miranda, J. (2021). Physicochemical properties of extruded ready-to-eat snack from unripe plantain blends, pineapple by-products and stevia. Nova Scientia, 13(27).


The aim of this research was to evaluate the effect of extrusion temperature (ET 120 – 180 °C), feed moisture content (FMC 16 - 25 g/100 g), pineapple by-products proportion (PBP) (0 - 30 g/100 g) in the unripe plantain flour, and the stevia content (STC 0 - 5 g/100 g) on the physicochemical properties and sensory acceptance of ready-to-eat extruded snacks, through a central compound design, using a single-screw extruder with a compression screw ratio of 3:1. The results were analyzed by response surface. The increase in FMC, PBP and STC decreased (p < 0.05) the expansion index (EI). The increase in ET decreased (p < 0.05) the apparent density (AD), water absorption index (WAI), water solubility index (WSI) and total color difference (ΔE). The increase in FMC decreases EI, WAI, and increase AD and WSI (p < 0.05). The Increase in PBP decreased EI, WSI, and increase AD, hardness (H) and ΔE (p < 0.05). The increase in STC decreased (p < 0.05) EI, and increase AD and H. The treatments with greater general acceptability were those that contained 15 and 30 g/100 g of PBP and STC 2.5 g/100 g, and they were obtained at ET 150ºC and 20.5 g/100 g of FMC, without affecting the physicochemical properties.


Ainsworth, P., İbanoğlu, Ş., Plunkett, A., İbanoğlu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. Journal of Food Engineering, 81(4), 702-709.

Alam, S. A., Järvinen, J., Kokkonen, H., Jurvelin, J., Poutanen, K., & Sozer, N. (2016). Factors affecting structural properties and in vitro starch digestibility of extruded starchy foams containing bran. Journal of Cereal Science, 71, 190-197.

Altan, A., McCarthy, K. L., & Maskan, M. (2008). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering, 84(2), 231-242.

Anderson, R. A. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal science Today, 14, 4-12.

Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., & Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55(1), 37-43.

Borah, A., Mahanta, C. L., & Kalita, D. (2016). Optimization of process parameters for extrusion cooking of low amylose rice flour blended with seeded banana and carambola pomace for development of minerals and fiber rich breakfast cereal. Journal of Food Science and Technology, 53(1), 221-232.

Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2013). Ready‐to‐eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science & Technology, 48(5), 893-902.

Caltinoglu, C., Tonyalı, B., & Sensoy, I. (2014). Effects of tomato pulp addition on the extrudate quality parameters and effects of extrusion on the functional parameters of the extrudates. International Journal of Food Science & Technology, 49(2), 587-594.

Carvalho, C. W., & Mitchell, J. R. (2000). Effect of sugar on the extrusion of maize grits and wheat flour. International Journal of Food Science & Technology, 35(6), 569-576.

Céspedes, M. A. L., & Bustos, F. M. (2010). The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food and Bioprocess Technology, 3(5), 684-692.

Charunuch, C., Limsangouan, N., Prasert, W., & Butsuwan, P. (2011). Optimization of extrusion conditions for functional ready-to-eat breakfast cereal. Food Science and Technology Research, 17(5), 415-422.

Cuj‐Laines, R., Hernández‐Santos, B., Reyes‐Jaquez, D., Delgado‐Licon, E., Juárez‐Barrientos, J. M., & Rodríguez‐Miranda, J. (2018). Physicochemical properties of ready‐to‐eat extruded nixtamalized maize‐based snacks enriched with grasshopper. International Journal of Food Science & Technology, 53(8), 1889-1895.

Fernandes, M. D. S., Sin-Huei, W., Ascheri, J. L. R., Oliveira, M. F. D., & Costa, S. A. J. (2002). Produtos extrusados expandidos de misturas de canjiquinha e soja para uso como petiscos. Pesquisa Agropecuária Brasileira, 37(10), 1495-1501.

Faisant, N., Gallant, D. J., Bouchet, B., & Champ, M. (1995). Banana starch breakdown in the human small intestine studied by electron microscopy. European Journal of Clinical Nutrition, 49(2), 98-104.

Fernández‐Gutiérrez, J. A., San Martín‐Martínez, E., Martínez‐Bustos, F., & Cruz‐Orea, A. (2004). Physicochemical properties of casein‐starch interaction obtained by extrusion process. Starch‐Stärke, 56(5), 190-198.

Food and Agriculture Organization (FAO) (2020). FAOSTAT Retrieved on March 25, 2020, from FAOSTAT Website:

Ganjyal, G. M., Reddy, N., Yang, Y. Q., & Hanna, M. A. (2004). Biodegradable packaging foams of starch acetate blended with corn stalk fibers. Journal of Applied Polymer Science, 93(6), 2627-2633.

Garcia-Valle, D. E., Bello-Perez, L. A., Flores-Silva, P. C., Agama-Acevedo, E., & Tovar, J. (2019). Extruded unripe plantain flour as an indigestible carbohydrate-rich ingredient. Frontiers in Nutrition, 6, 2.

Gonzales, R. J., Torres, R. L., & Añón, M. C. (2000). Comparison of rice and corn cooking characteristics before and after extrusion. Polish Journal of Food and Nutrition Sciences, 9(50), 29-54.

González, R. J., Torres, R. L., & De Greef, D. M. (2002). Extrusión-cocción de cereales. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 36(2), 104-115.

Gumul, D., Ziobro, R., Gambuś, H., & Nowotna, A. (2015). Usability of residual oat flour in the manufacture of extruded corn snacks. CyTA-Journal of Food, 13(3), 353-360.

Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43(1), 38-46.

Hashimoto, J. M., & Grossmann, M. V. E. (2003). Effects of extrusion conditions on quality of cassava bran/cassava starch extrudates. International Journal of Food Science & Technology, 38(5), 511-517.

Ilelaboye, N. O. (2019). Chemical, Physico-Chemical and Sensory Evaluation of Moringa-Plantain Flour. Asian Food Science Journal, 1-12.

Kaisangsri, N., Kowalski, R. J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT-Food Science and Technology, 68, 391-399.

Kaur, A., Kaur, S., Singh, M., Singh, N., Shevkani, K., & Singh, B. (2015). Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates. Journal of Food Science and Technology, 52(7), 4276-4285.

Korkerd, S., Wanlapa, S., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2016). Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. Journal of Food Science and Technology, 53(1), 561-570.

Kumar, N., Sarkar, B. C., & Sharma, H. K. (2010). Development and characterization of extruded product using carrot pomace and rice flour. International Journal of Food Engineering, 6(3).

Lawless, H. T., & Heymann, H. (1998). Sensory evaluation of food: principles and practices. New York: Chapman and Hall.

Lee. S. J., Lee, K. R., Park, J. R., Kim, K. S., & Tchai, B. S. (1979). A Study on the safety of stevioside as a new sweeting source. Korean Journal of Food Science and Technology, 11, 224-231.

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012). Chemical, technological, and in vitro antioxidant properties of mango, guava, pineapple, and passion fruit dietary fibre concentrate. Food chemistry, 135(3), 1520-1526.

Midmore, D. J., & Rank, A. H. (2002). A new rural industry-Stevia-to replace imported chemical sweeteners (pp. 1-23). Rural Industries Research and Development Corporation.

Mjoun, K., & Rosentrater, K. A. (2011). Extruded aquafeeds containing distillers dried grains with solubles: effects on extrudate properties and processing behaviour. Journal of the Science of Food and Agriculture, 91(15), 2865-2874.

Moraru, C. I., & Kokini, J. L. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2(4), 147-165.

Mridula, D., Sethi, S., Tushir, S., Bhadwal, S., Gupta, R. K., & Nanda, S. K. (2017). Co-extrusion of food grains-banana pulp for nutritious snacks: optimization of process variables. Journal of Food Science and Technology, 54(9), 2704-2716.

Navarro-Cortez, R. O., Hernández-Santos, B., Gómez-Aldapa, C. A., Castro-Rosas, J., Herman-Lara, E., Martínez-Sánchez, C. E., Juárez-Barrientos, J. M., Antonio-Cisneros, C. M., & Rodríguez-Miranda, J. (2016). Development of extruded ready-to-eat snacks using pumpkin seed (Cucurbita pepo) and nixtamalized maize (Zea mays) flour blends. Revista Mexicana de Ingeniería Química, 15(2), 409-422.

Nayak, B., Berrios, J. D. J., Powers, J. R., & Tang, J. (2011). Effect of extrusion on the antioxidant capacity and color attributes of expanded extrudates prepared from purple potato and yellow pea flour mixes. Journal of Food Science, 76(6), C874-C883.

Norfezah, M. N., Hardacre, A., & Brennan, C. S. (2011). Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Science and Technology International, 17(4), 367-373.

Onwulata, C. I., Thomas, A. E., Cooke, P. H., Phillips, J. G., Carvalho, C. W. P., Ascheri, J. L. R., & Tomasula, P. M. (2010). Glycemic potential of extruded barley, cassava, corn, and quinoa enriched with whey proteins and cashew pulp. International Journal of Food Properties, 13(2), 338-359.

Pitts, K. F., Favaro, J., Austin, P., & Day, L. (2014). Co-effect of salt and sugar on extrusion processing, rheology, structure, and fracture mechanical properties of wheat–corn blend. Journal of Food Engineering, 127, 58-66.

Rivera‐Mirón, M. I., Torruco‐Uco, J. G., Carmona‐García, R., & Rodríguez‐Miranda, J. (2020). Optimization of an extrusion process for the development of a fiber‐rich, ready‐to‐eat snack from pineapple by‐products and sweet whey protein based on corn starch. Journal of Food Process Engineering, 43(11), e13532.

Rodríguez-Miranda, J., Ramírez-Wong, B., Vivar-Vera, M. A., Solís-Soto, A., Gómez-Aldapa, C. A., Castro-Rosas, J., Medrano-Roldan, H., & Delgado-Licon, E. (2014). Efecto de la concentración de harina de frijol (Phaseolus vulgaris L.), contenido de humedad y temperatura de extrusión sobre las propiedades funcionales de alimentos acuícolas. Revista Mexicana de Ingeniería Química, 13(3): 649-663.

Rodríguez-Miranda, J., Ruiz-López, I. I., Herman-Lara, E., Martínez-Sánchez, C. E., Delgado-Licon, E., & Vivar-Vera, M. A. (2011). Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT-Food Science and Technology, 44(3), 673-680.

Roudaut, G., Dacremont, C., Pàmies, B. V., Colas, B., & Le Meste, M. (2002). Crispness: a critical review on sensory and material science approaches. Trends in Food Science & Technology, 13(6-7), 217-227.

Ruiz-Armenta, X. A., Zazueta-Morales, J. D. J., Aguilar-Palazuelos, E., Delgado-Nieblas, C. I., López-Diaz, A., Camacho-Hernández, I. L., Gutiérrez-Dorado, R., & Martínez-Bustos, F. (2018). Effect of extrusion on the carotenoid content, physical and sensory properties of snacks added with bagasse of naranjita fruit: optimization process. CyTA-Journal of Food 16(1), 172-180.

Sarawong, C., Schoenlechner, R., Sekiguchi, K., Berghofer, E., & Ng, P. K. (2014). Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content, and antioxidant capacities of green banana flour. Food Chemistry, 143, 33-39.

Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23-30.

Simons, C. W., Hall III, C., Tulbek, M., Mendis, M., Heck, T., & Ogunyemi, S. (2015). Acceptability and characterization of extruded pinto, navy, and black beans. Journal of the Science of Food and Agriculture, 95(11), 2287-2291.

Sozer, N., & Poutanen, K. (2013). Fibre in extruded food products. In: Delcour, J.A., Poutanen, K. (Eds.), Fibre-rich and Wholegrain Foods e Improving Quality. Woodland, Cambridge, UK, pp. 226-272.

Thakur, S., & Saxena, D. C. (2000). Formulation of extruded snack food (gum based cereal–pulse blend): optimization of ingredients levels using response surface methodology. LWT-Food Science and Technology, 33(5), 354-361.

Wang, J., Huang, H. H., & Chen, P. S. (2017). Structural and physicochemical properties of banana resistant starch from four cultivars. International Journal of Food Properties, 20(6), 1338-1347.

Wang, W. M., Klopfenstein, C. F., & Ponte, J. G. (1993). Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal chemistry, 70(6), 707-711.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia