Acacia farnesiana extract for the control of Aedes aegypti larvae
PDF (Español (España))

Keywords

mosquito
Aedes
vector control
dimethyltryptamine
chemical control
temephos
dengue vector
Acacia farnesiana
extracts
chikungunya
yellow fever
Zika
insecticides
bioassays
larvicidal mosquito
Aedes
control de vectores
larva
dimetiltriptamina
control químico
temefos
vectores del dengue
acacia farnesiana
extractos
chikunguña
fiebre amarilla
zika
insecticidas
bioensayos
larvicida

How to Cite

Granados Montelongo, J. A., Núñez Colima, J. A., Trujillo Zacarías, I., Cano del Toro, J., Chan-Chablefirma, R. J., & Hidalgo de León, A. (2021). Acacia farnesiana extract for the control of Aedes aegypti larvae. Nova Scientia, 13(27). https://doi.org/10.21640/ns.v13i27.2840

Abstract

Introduction: Aedes aegypti is the main vector of dengue, chikungunya, yellow fever and Zika in the world, chemical control is the most used for its prevention, attacking the reproduction of the mosquito vector, mainly through the application of synthetic insecticides in their breeding places. However, the use of synthetic insecticides has generated resistance in mosquitoes and several ecological problems. The extracts of natural plants with insecticidal function are used as an alternative for vector control. The objective of the present study was to evaluate the larvicidal activity of the Acacia farnesiana pod extract against fourth stage larvae of Ae. aegypti.                     

Method: the study was developed in the Laboratory of the Instituto Tecnológico Superior de San Pedro Coahuila, and in the ejido Mayran, San Pedro, Coahuila Mexico. The extract we prepared according to the methodology proposed by INIFAP-CENID-RASPA 1997. The extracts were used in bioassays with fourth instar larvae of Ae. aegypti for 168 hours. Groups of 20 larvae were transferred into plastic cups with 50 mL of water, then 1 mL of each treatment of Acacia farnesiana was applied with final concentrations of 15 % (T1), 25 % (T2), 35 % (T3) and 70 % (T4). For the chemical control Abate® 1SG (Temephos) at 25 % was used. No treatment was applied to the blank. To compare mortality, a one actor analysis of variance was performed for each study (laboratory and field) and an analysis of repeated measures over time for the field phase. A Tukey mean comparison test was developed. The analysis were carried out using the statistical computer program IBM.SPSS 18, with a significance level of P ≤ 0.05.                    

Results: in the laboratory, the extract of A. farnesiana at 35% concentration showed greater toxicity against larvae of Ae. aegypti obtaining an average mortality of 15.66 (78.3 %) 72 hours after treatment application (P ≤ 0.05). In the same way, under field conditions, the 35 % treatment turned out to be the most effective, reaching an average of 19.04 (95.2 %) dead larvae.

Discussion or Conclusion: the extract of A. farnesiana showed insecticidal activity against Ae. aegypti larvae, being more effective at 35 % concentration in laboratory and field conditions. The larvicidal effect of the A. farnesiana extract can be used as a feasible and sustainable alternative to control Ae. aegypti in rural areas. However, it is necessary to do more studies to identify the active ingredients and the action mechanism present in A. farnesiana pods for vector control.

https://doi.org/10.21640/ns.v13i27.2840
PDF (Español (España))

References

Aarthi, N., y Murugan, K. (2010). Larvicidal and repellent activity of Vetiveria zizanioides L, Ocimum basilicum Linn and the microbial pesticide spinosad against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Journal of Biopesticides, 3(1 special issue), 199–204.

Álvarez-Costa, A. A., Naspi, V. C., Lucia, A., y Masuh, H. M. (2017). Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 54(3), 670–676. https://doi.org/10.1093/jme/tjw222

Aponte, H. A., Penilla, R. P., Dzul-Manzanilla, F., Che-Mendoza, A., López, A. D., Solis, F., Manrique-Saide, P., Ranson, H., Lenhart, A., McCall, P. J., y Rodríguez, A. D. (2013). The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pesticide Biochemistry and Physiology, 107(2), 226–234. https://doi.org/10.1016/j.pestbp.2013.07.005

Benelli, G., Pavela, R., Petrelli, R., Cappellacci, L., Canale, A., Senthil-Nathan, S., y Maggi, F. (2018). Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Industrial Crops and Products, 124(July), 236–243. https://doi.org/10.1016/j.indcrop.2018.07.048

Benelli, G., Pavela, R., Petrelli, R., Nzekoue, F. K., Cappellacci, L., Lupidi, G., Quassinti, L., Bramucci, M., Sut, S., Dall’Acqua, S., Canale, A., y Maggi, F. (2019). Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Industrial Crops and Products, 137(April), 356–366. https://doi.org/10.1016/j.indcrop.2019.05.037

CONABIO. (2017). La biodiversidad en Coahuila. CONABIO. https://www.cbd.int/doc/nbsap/study/mx-study-coahuila-p1-es.pdf, Fecha de acceso: 07 de Junio de 2021

Corbel, V., Duchon, S., Zaim, M., y Hougard, J. M. (2004). Dinotefuran: A potential neonicotinoid insecticide against resistant mosquitoes. Journal of Medical Entomology, 41(4), 712–717. https://doi.org/10.1603/0022-2585-41.4.712

Da S. Mesquita, R., De Oliveira, A. C., Sá, I. S. C., Sales, M. L. F., Bastos, L. M., Koolen, H. H. F., Tadei, W. P., M.A., D. S. F., y Nunomura, R. C. S. (2020). Essential Oils from Leaves of Virola calophylla , Virola multinervia, and Virola pavonis (Myristicaceae): Chemical Composition and Larvicidal Activity against Aedes aegypti. Journal of Essential Oil Bearing Plants, 23(3), 453–463. https://doi.org/10.1080/0972060X.2020.1777212

De Guilhem de Lataillade, L., Vazeille, M., Obadia, T., Madec, Y., Mousson, L., Kamgang, B., Chen, C.-H., Failloux, A.-B., y Yen, P.S. (2020). Risk of yellow fever virus transmission in the Asia-Pacific region. Nature Communications, 11(1), 5801. https://doi.org/10.1038/s41467-020-19625-9

De Souza Wuillda, A. C. J., Campos Martins, R. C., y das Nevesa Costa, F. (2019). Larvicidal activity of secondary plant metabolites in Aedes aegypti control: An overview of the previous 6 years. Natural Product Communications, 14(7). https://doi.org/10.1177/1934578X19862893

Deshmukh, S., Shrivastava, B., y Bhajipale, N. (2018). A Review on Acacia species of therapeutics importance. International Journal of Pharmaceutical and Biological Science Archive, 6(4), 24–34.

Dey, P., Goyary, D., Chattopadhyay, P., Kishor, S., Karmakar, S., y Verma, A. (2020). Evaluation of larvicidal activity of Piper longum leaf against the dengue vector, Aedes aegypti, malarial vector, Anopheles stephensi and filariasis vector, Culex quinquefasciatus. South African Journal of Botany, 132, 482–490. https://doi.org/10.1016/j.sajb.2020.06.016

EFSA. (2012). Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. In Scientific Report of European Food Safety Authority, 10(5). https://doi.org/10.2903/j.efsa.2012.2663

Erhorn, S. (2007). Dimethyltryptamine. In Elsevier Inc. (Ed.) xPharm: The Comprehensive Pharmacology Reference (1-4). Elsevier. https://doi.org/10.1016/B978-008055232-3.62227-5

Fernández-Salas, A., Alonso-Díaz, M. A., Acosta-Rodríguez, R., Torres-Acosta, J. F. J., Sandoval-Castro, C. A., y Rodríguez-Vivas, R. I. (2011). In vitro acaricidal effect of tannin-rich plants against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Veterinary Parasitology, 175(1–2), 113–118. https://doi.org/10.1016/j.vetpar.2010.09.016

Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G., Ga’al, H., y Jianchu, M. (2018). Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 558–567. https://doi.org/10.1080/21691401.2017.1329739

García, S., Alarcón, G., Rodríguez, C., y Heredia, N. (2006). Extracts of Acacia farnesiana and Artemisia ludoviciana inhibit growth, enterotoxin production and adhesion of Vibrio cholerae. World Journal of Microbiology and Biotechnology, 22(7), 669–674. https://doi.org/10.1007/s11274-005-9087-z

GBIF Secretariat. (2019). Acacia farnesiana (L.) Willd. GBIF Backbone Taxonomy. https://www.gbif.org/species/2979257. Fecha de consulta 30 de enero de 2021.

Ghramh, H. A., Al-Ghamdi, K. M., Mahyoub, J. A., y Ibrahim, E. H. (2018). Chrysanthemum extract and extract prepared silver nanoparticles as biocides to control Aedes aegypti (L.), the vector of dengue fever. Journal of Asia-Pacific Entomology, 21(1), 205–210. https://doi.org/10.1016/j.aspen.2017.12.001

Govindarajan, M., Rajeswary, M., y Benelli, G. (2016). Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicology and Environmental Safety, 129, 85–90. https://doi.org/10.1016/j.ecoenv.2016.03.007

Hira, A., Zia Butt, B., y Ejaz Vehra, S. (2017). Evaluation of larvicidal activity of Parthenium hysterophorus against Aedes aegypti. International Journal of Mosquito Research, 4(2), 01–04.

Inafed. (2010). Coahuila-San Pedro. Enciclopedia de Los Municipios y Delegaciones de México. http://www.inafed.gob.mx/work/enciclopedia/EMM05coahuila/municipios/05033a.html, Fecha de acceso: 07 de Junio de 2021

INEGI. (2021). Censo Población y Vivienda 2020. Censo de Población y Vivienda 2020. https://www.inegi.org.mx/programas/ccpv/2020/. Fecha de consulta: 29 de Enero de 2021.

Kamalakannan, S., Murugan, K., y Barnard, D. R. (2011). Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae). Journal of Asia-Pacific Entomology, 14(1), 41–45. https://doi.org/10.1016/j.aspen.2010.11.011

López-Solís, A. D., Castillo-Vera, A., Cisneros, J., Solís-Santoyo, F., Penilla-Navarro, R. P., Black IV, W. C., Torres-Estrada, J. L., y Rodríguez, A. D. (2020). Resistencia a insecticidas en Aedes aegypti y Aedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. Salud Pública de México, 62(4, jul-ago), 439. https://doi.org/10.21149/10131

Mejía-Guevara, M. D., Correa-Morales, F., González-Acosta, C., Dávalos-Becerril, E., Peralta-Rodríguez, J. L., Martínez-Gaona, A., Hernández-Nava, M., Ramírez-Huicochea, C., Rosas-Trinidad, L., Carmona-Pérez, M., Salazar-Bueyes, V., Tapia-Olarte, F., y Moreno-García, M. (2020). El mosquito del dengue en la Ciudad de México. Invasión incipiente de Aedes aegypti y sus potenciales riesgos. Gaceta Médica de México, 156(5), 388–395. https://doi.org/10.24875/GMM.20000009

Nunes Pereira, T., Duarte Carvalho, F., Faria De Mendonça, S., Neves Rocha, M., y Andrade Moreira, L. (2020). Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLOS Neglected Tropical Diseases, 14(4), e0007518. https://doi.org/10.1371/journal.pntd.0007518

OMS (2020) Insecticide resistance. Organizacion Mundial de la Salud. http://www.who.int/malaria/areas/vector_control/insecticide_resistance/en/ Fecha de consulta: 11 de enero de 2021

OMS/OPS. (2020). Actualización Epidemiológica Dengue. https://www.paho.org/sites/default/files/2020-02/2020-feb-7-phe-actualizacion-epi-dengue.pdf. Fecha de consulta 29 de enero de 2021.

PAHO/WHO. (2019, November 11). Dengue in the Americas reaches highest number of cases recorded. https://www.paho.org/hq/index.php?option=com_content&view=article&id=15593:dengue-in-the-americas-reaches-highest-number-of-cases-recorded&Itemid=1926&lang=es. Fecha de consulta: 11 de enero de 2021

Panneerselvam, C., Murugan, K., Roni, M., Aziz, A. T., Suresh, U., Rajaganesh, R., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Nicoletti, M., Higuchi, A., Alarfaj, A. A., Munusamy, M. A., Kumar, S., Desneux, N., y Benelli, G. (2016). Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitology Research, 115(3), 997–1013. https://doi.org/10.1007/s00436-015-4828-x

Pavela, R., Maggi, F., Iannarelli, R., y Benelli, G. (2019). Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Tropica, 193(January), 236–271. https://doi.org/10.1016/j.actatropica.2019.01.019

Penella, J. (2016, July). Dengue y dengue grave. Oms. https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue. Fecha de consulta: 11 de enero de 2021.

Ponce-García, G. P., Flores, A. E., Fernández-Salas, I., Saavedra-Rodríguez, K., Reyes-Solis, G., Lozano-Fuentes, S., Guillermo Bond, J., Casas-Martínez, M., Ramsey, J. M., García-Rejón, J., Domínguez-Galera, M., Ranson, H., Hemingway, J., Eisen, L., y Black, W. C. (2009). Recent Rapid Rise of a Permethrin Knock Down Resistance Allele in Aedes aegypti in México. PLoS Neglected Tropical Diseases, 3(10), e531. https://doi.org/10.1371/journal.pntd.0000531

Raveen, R., Ahmed, F., Pandeeswari, M., Tennyson, S., Arivoli, S., y Jayakumar, M. (2017). Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and Zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). International Journal of Mosquito Research, 4(4), 17–28.

Rodrigues, M. A., Martins, V. E., y Morais, S. M. (2020). Larvicidal efficacy of plant extracts and isolated compounds from Annonaceae and Piperaceae against Aedes aegypti and Aedes albopictus. Asian Pacific Journal of Tropical Medicine, 13(9), 384. https://doi.org/10.4103/1995-7645.290583

Saavedra-Rodriguez, K., Urdaneta-Marquez, L., Rajatileka, S., Moulton, M., Flores, A. E. ‡, Fernandez- Salas, I., Bisset§, J., Rodriguez§, M., Mccall†, P. J., Donnelly, M. J., Ranson†, H., Hemingway, J. †, y Black IV, W. C. (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Molecular Biology, 16(October), 785–798.

Silveiral Silvério, M. R., Salmen Espindola, L., Peporine Lopes, N., y Vieira, P. C. (2020). Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules, 25(15), 3484. https://doi.org/10.3390/molecules25153484

Subramaniam, J., Murugan, K., Jebanesan, A., Pontheckan, P., Dinesh, D., Nicoletti, M., Wei, H., Higuchi, A., Kumar, S., Canale, A., y Benelli, G. (2017). Do Chenopodium ambrosioides-Synthesized Silver Nanoparticles Impact Oryzias melastigma Predation Against Aedes albopictus Larvae?. Journal of Cluster Science, 28(1), 413–436. https://doi.org/10.1007/s10876-016-1113-9

Sugauara, E. Y. Y., Sugauara, E., Sugauara, R. R., Bortolucci, W. de C., Fernandez, C. M. M., Gonçalves, J. E., Colauto, N. B., Gazim, Z. C., y Linde, G. A. (2020). Larvicidal activity of Brunfelsia uniflora extracts on Aedes aegypti larvae. Natural Product Research, 0(0), 1–7. https://doi.org/10.1080/14786419.2020.1844685

Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., Kumar, P. M., Subramaniam, J., Dinesh, D., y Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 114(4), 1551–1562. https://doi.org/10.1007/s00436-015-4339-9

Tidiane Diagne, C., Bengue, M., Choumet, V., Hamel, R., Pompon, J., y Missé, D. (2020). Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens, 9(9), 738. https://doi.org/10.3390/pathogens9090738

Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Edwin, E.-S., Selin-Rani, S., Chellappandian, M., Pradeepa, V., Lija-Escaline, J., Kalaivani, K., Hunter, W. B., Duraipandiyan, V., y Al-Dhabi, N. A. (2017). Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicology and Environmental Safety, 139(November 2016), 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026

Vázquez-Marroquín, R., Duarte-Andrade, M., Hernández-Triana, L. M., Ortega-Morales, A. I., y Chan-Chable, R. J. (2020). New records of mosquito species (Diptera: Culicidae) in La Comarca Lagunera, Durango, Mexico. Nova Scientia, 12(25), 1–19. https://doi.org/10.21640/ns.v12i25.2651

Veni, T., Pushpanathan, T., y Mohanraj, J. (2017). Larvicidal and ovicidal activity of Terminalia chebula Retz. (Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Journal of Parasitic Diseases, 41(3), 693–702. https://doi.org/10.1007/s12639-016-0869-z

Vibrans, H. (2009, August). Mimosaceae = Leguminosae en parte Acacia farnesiana (L.) Willd. Huizache. Malezas de México. http://www.conabio.gob.mx/malezasdemexico/mimosaceae/acacia-farnesiana/fichas/ficha.htm. Fecha de consulta: 29 de enero de 2021.

Villegas-Ramírez, H. M., Torres-Zapata, R., Rebollar-Téllez, E., Rodríguez-Sánchez, I. P., Gómez-Govea, A., y Ponce-García, G. (2020). Determinación de dosis respuesta y razón de resistencia en larva de Aedes aegypti L,1762 (culicidae) a insecticidas piretroides y organofosforados. Fisiología, toxicología y biología molecular, 1762, 431–436.

Vinayaka K.S, Prashith Kekuda, T. ., Rakshitha, M. ., Ramya, M., Shruthi, J., Nagashree, G. y Anitha, B. (2010). Scholars Research Library Potent insecticidal activity of fruits and leaves of Capsicum frutescens (L.) var. longa (Solanaceae). Scholars Research Library, 2(4), 172–176. www.scholarsresearchlibrary.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia