RETRACTED PAPER Ammonium and Sulfate on growth, physiological activity and nutrimental status of lisianthus plants cv. ABC 1-2 deep rose
PDF (Español (España))


Eustoma grandiflorum Eustoma grandiflorum
plant growth

How to Cite

García Santiago, J. C. ., Hernández Pérez, A., Aureoles Rodríguez, F. ., González Fuentes, . J. A. ., Torres Olivar, V., Méndez López, . A. ., & Álvarez Vázquez, P. . (2021). RETRACTED PAPER Ammonium and Sulfate on growth, physiological activity and nutrimental status of lisianthus plants cv. ABC 1-2 deep rose. Nova Scientia, 13(26). Retrieved from


Nitrogen (N) and Sulfur (S) are nutrients that have a strong uptake interaction. Therefore, the addition of these nutrients in the right ratio has a positive influence in plant development. This work is aiming to assess the effects of the interaction between NH4+ and SO42- at different concentrations, on the growth, physiology and macronutrient concentration in Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cv. Dark Pink ABC 1-2. The trial treatments included three concentrations of NH4+ (0, 2.5 and 5 meq L-1) and two concentrations of SO42- (7 y 10 meq L-1). The different concentrations of SO42- y NH4+ were based on Steiner’s nutrient solution modifications.  We used 10-liter black polyethylene containers and perlite substrate with particles size of 0.2-0.5mm in diameter. The results showed that the stem diameter and dry biomass production of roots, stems, flowers and total biomass were higher with 5 meq L-1 of NH4+ and 7 meq L-1 of SO42-. On the other hand, total leaf dry weight and plant height were higher with 2.5 meq L-1 of NH4+ and 7 meq L-1 of SO42-. The plants showed the same behavior in terms of photosynthesis, transpiration and stomatal conductance. We obtained the highest concentration of N and P by applying 2.5 meq L-1 of NH4+ with 10 meq L-1 of SO42. Furthermore, Mg, and S concentrations were higher when we supplied 2.5 meq L-1 of NH4+ with the two concentrations of SO42; while K and Ca were higher when we increased the concentration of NH4+ with 7 meq L-1 of SO42-. We obtained the best growth rate, biomass production and nutrient concentration  (K and Ca) in Lisianthus plants with 5 meq L-1 of NH4+/ 7 meq L-1 of SO42-; while physiological activity improved with 2.5 meq L-1 of NH4+ / 7 meq L-1 of SO42- ratio. 

PDF (Español (España))


Abdin, M. Z., Ahmad, A., Khan, N., Khan, I., Jamal, A., and Iqbal, M. (2003). Sulphur interaction with other nutrients. In Sulphur in plants, (pp. 359-374). Springer, Dordrecht. doi:

Ahmad, A., Abraham, G., Gandotra, N., Abrol, Y. P., and Abdin, M. Z. (1998). Interactive effect of nitrogen and sulphur on growth and yield of rapeseed-mustard (Brassica juncea L. Czem and Coss and Brassica campestris L.) genotypes. Journal of Agronomy and Crop Science, 181 (4), 193-199. doi:

Ahmad, S., Fazli, I. S., Jamal, A., Iqbal, M., and Abdin, M. Z. (2007). Interactive effect of sulphur and nitrogen on nitrate reductase and ATP-Sulphurylase activities in relation to seed yield from Psoralea corylifolia L. Journal of Plant Biology, 50(3), 351-357. doi:

Anjum, N. A., Gill, S. S., Umar, S., Ahmad, I., Duarte, A. C., and Pereira, E. (2012). Improving growth and productivity of oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. The Scientific World Journal, 2012, 1-12. doi:

Ariz, I., Artola, E., Asensio, A. C., Cruchaga, S., Aparicio-Tejo, P. M., and Moran, J. F. (2011). High irradiance increases NH4+ tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation. Journal of plant physiology, 168(10), 1009-1015. doi:

Bijlsma, R. J., Lambers, H., and Kooijman, S.A.L.M. (2000). A dynamic whole plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant Soil, 220(1), 49-69. doi:

Borgognone, D., Colla, G., Rouphael, Y., Cardarelli, M., Rea, E., and Schwarz, D. (2013). Effect of N form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae, 149, 61–69. doi:

Bremner, J. M. (1996). Total nitrogen, p.1085-1086. In: D. L. Sparks (ed.). Methods of soil analysis. Part 3. Chemical Methods. Soil Science Society of America. Madison, WI.

Britto, D. T., and Kronzucker, J. (2002). NH4+ toxicity in higher plants: a critical review. Journal of plant physiology, 159(6), 567–584. doi:

Britto, D.T., and Kronzucker, H. J. (2013). Ecological significance and complexity of N‐source preference in plants. Annals of botany, 112(6), 957-963. doi:

Bruck, H., and Guo, S.W. (2006). Influence of N form on growth and photosynthesis of Phaseolus vulgaris L. plants. Journal of Soil Science and Plant Nutrition, 169(6), 849-856. doi:

Bugarín, R., Baca, G. A., Martínez, J., and Tirado, J. L. (1998). Amonio/nitrato y concentración iónica total de la solución nutritiva en crisantemo. ii. extracción nutrimental de hojas. Terra Latinoamericana, 16(2), 113-124.

Chandra, N., and Pandey, N. (2014a). Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium cepa L. International Scholarly Research Notices, 2014, 1–9. doi:

Chandra, N., and Pandey, N. (2014b). Antioxidant status of Vigna mungo L. in response to sulfur nutrition. Chinese Journal of Biology, 2012, 1-9. doi:

Cruz, C., Bio, A. F. M., Dominguez-Valdivia, M. D., Aparicio-Tejo, P. M., Lamsfus, C., and Martins-Loucao, M. A. (2006). How does glutamine synthetase activity determine plant tolerance to ammonium? Planta, 223(5), 1068–1080. doi:

Davidian, J. C., and Kopriva, S. (2010). Regulation of sulfate uptake and assimilation-the same or not the same? Molecular plant, 3(2), 314-25. doi:

de Souza, M. R., Gomes-Filho, E., Prisco, J. T., and Alvarez-Pizarro, J. C. (2016). Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant growth regulation, 78(1): 121-131. doi:

Domínguez, M. D., Aparicio‐Tejo, P. M., Lamsfus, C., Cruz, C., Martins‐Loução, M. A., and Moran, J. F. (2008). Nitrogen nutrition and antioxidant metabolism in ammonium‐tolerant and‐sensitive plants. Physiologia Plantarum, 132(3), 359-369. doi:

Esteban, R., Ariz, I., Cruz, C., and Moran, J. F. (2016). Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 248, 92-101. doi:

Fernández, Y. L., and Trejo, L. I. (2018). Biología, importancia económica y principales líneas de investigación en lisianthus: una especie ornamental nativa de México. AGROProductividad, 11(8), 177-183.

Fismes, J., Vong, P. C., Guckert, A., and Frossard, E. (2000). Influence of sulphur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. European Journal of Agronomy, 12(2), 127-141. doi:

Furlani, P. R., Bolonhesi, D. L. P, Silveira, C., y Fanquin, V. (1999). Cultivo hidropónico de plantas. Campinas: Instituto Agronómico. Boletín técnico 180. 52 p.

Gavrichkova, O., and Kuzyakov, Y. (2010). Respiration costs associated with nitrate reduction as estimated by 14CO2 pulse labeling of corn at various growth stages. Plant Soil, 329(1), 433–445. doi:

Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. doi:

Guo, H., Liu, W., and Shi, Y., (2006). Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica, 44(1), 140–142. doi:

Hänsch, R., Lang, C., Riebeseel, E., Lindigkeit, R., Gessler, A., Rennenberg, H., and Mendel, R. R. (2006). Plant sulfite oxidase as novel producer of H2O2. Combination of enzyme catalysis with a subsequent non-enzymatic reaction step. Journal of Biological Chemistry, 281(10), 6884–6888. doi:

Hernández, A., Valdez, L. A., Villegas, O. G., Alía, I., Trejo, L. I., and Sainz, M. D. J. (2016). Effects of ammonium and calcium on lisianthus growth. Horticulture, Environment, and Biotechnology, 57(2), 123-131. doi:

Hernández, A., Villegas, O. G., Valdez, L. A., Alia, I., López, V., and Domínguez, M. L. (2015). Tolerancia de lisianthus (Eustoma grandiflorum (Raf.) Shinn.) a elevadas concentraciones de amonio en la solución nutritiva. Revista mexicana de ciencias agrícolas, 6(3), 467-482.

Iqbal, N., Masood, A., Khan, M. I. R., Asgher, M., Fatma, M., and Khan, N. A. (2013). Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant signaling & behavior, 8(1), 104-112. doi:

Jamal, A., Fazli, I. S., Ahmad, S., Kim, K. T., Oh, D. G., and Abdin, M. Z. (2006). Effect of sulfur on nitrate reductase and TP-sulfurylase activities in groundnut (Arachis hypogea L.). Journal of Plant Biology, 49(6), 513-517. doi:

Jamal, A., Moon, Y. S., and Zainul Abdin, M. (2010). Sulphur-a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4(7), 523-529.

Kant, S., Kant, P., Lips, H., and Barak, S. (2007). Partial substitution of NO3- by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. Journal of Plant Physiology, 164(3), 303–311. doi:

Kar, M., and Mishra D. (1976). Catalase, Peroxidase, and Polyphenol oxidase Activities during Rice Leaf Senescence. Plant physiology, 57(2), 315-319. doi:

Konnerup, D., and Hans, B. (2010). Nitrogen nutrition of Canna indicia: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, and nitrate reeducates activity and N uptake rates. Aquatic Botany, 92(2), 142–148. doi:

Kopriva, S. (2006). Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of botany, 97(4), 479–495. doi:

Kopriva, S., and Koprivova, A. (2003). Sulphate assimilation: a pathway which likes to surprise. In Sulphur in plants (pp. 87-112). Springer, Dordrecht. doi:

Kopriva, S., and Rennenberg, H. (2004). Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. Journal of experimental botany, 55(404), 1831–1842. doi:

Kopriva, S., Calderwood, A., Weckopp, S. C., and Koprivova, A. (2015). Plant sulfur and big data. Plant Science, 241, 1-10. doi:

Kronzucker, H. J., Britto, D. T., Davenport, R. J., and Tester, M. (2001). Ammonium toxicity and the real cost of transport. Trends in plant science, 6(8), 335–337.

Leustek, T., Martin, M. N., Bick, J. A., and Davies, J. P. (2000). Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual review of plant biology, 51(1), 141–165. doi:

Liu, G., Du, Q., and Li, J. (2017). Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214, 41-50. doi:

Lopes, M. S., and Araus, J. L. (2006). Nitrogen source and water regime effects on durum wheat photosynthesis, and stable carbon and nitrogen isotope composition. Physiologia Plantarum, 126(3), 435–445. doi:

Lugassi, M., Kitron, M., Bustan, A., and Zaccai, M. (2010). Effect of shade regime on flower development, yield and quality in lisianthus. Scientia Horticulturae, 124(2), 248-253. doi:

Maathuis, F. J., and Diatloff, E. (2013). Roles and functions of plant mineral nutrients. In Plant Mineral Nutrients (pp. 1-21). Humana Press, Totowa, NJ. doi:

Marschner, P. (2012). Mineral nutrition of higher plants. Academic Press, London, p 651.

Masia, A. (1998). Superoxide dismutase and catalase activities in apple fruit during ripening and post-harvest and with special reference to ethylene. Physiologia Plantarum, 104(4), 668-672. doi:

Mazid, M., Khan, T. M., and Mohammad, F. (2011). Response of crop plants under sulphur stress tolerance. Journal of Stress Physiology & Biochemistry, 7(3), 25–57.

Mazuela, P., De La Riva, F., and Urrestarazu, G. M. (2007). Cultivo de lisianthus en perlita. Planta flor, 124, 92-94.

Mendoza, R., Valdez, L. A., Sandoval, A., Robledo. V., and Benavides, A. (2015). Tolerance of lisianthus to high ammonium levels in rockwool culture. Journal of Plant Nutrition, 38(1), 73-82. doi:

Na, L., Li, Z., Xiangxiang, M., Ara, N., Jinghua, Y., and Mingfang, Z. (2014). Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. Journal of Plant Nutrition, 37(11), 1859–1872. doi:

Nazar, R., Khan, M. I. R., Iqbal, N., Masood, A., and Khan, N. A. (2014). Involvement of ethylene in reversal of salt‐inhibited photosynthesis by sulfur in mustard. Physiologia plantarum, 152(2), 331-344. doi:

Niedz, R. P., and Evens, T. J. (2007). Regulating plant tissue growth by mineral nutrition. In Vitro Cellular & Developmental Biology – Plant, 43(4), 370–381. doi:

Rennenberg, H. (1984). The fate of excess sulfur in higher plants. Annual Review of Plant Physiology, 35(1), 121-153. doi:

Reuveny, Z., Dougall, D. K., and Trinity, P. M. (1980). Regulatory coupling of nitrate and sulphate assimilation pathways in cultured tobacco cells. Proceedings of the National Academy of Sciences, 77(11), 6670–6672. doi:

Rios, K., Erdei, L., and Lips, S. H. (2002). The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 162(6), 923-930. doi:

Roosta, H. R., and Schjoerring, J. K. (2007). Effects of ammonium toxic¬ity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition, 30(11), 1933–1951. doi:

Salvagiotti, F., and Miralles, D. J. (2008). Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy, 28(3), 282–290. doi:

Salvagiotti, F., Castellarín, J. M., Miralles, D. J., and Pedrol, H. M. (2009). Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research, 113(2), 170–177. doi:

Schilling, G., Adgo, E., and Schulze, J. (2006). Carbon costs of nitrate reduction in broad bean (Vicia faba L.) and pea (Pisum sativum L.) plants. Journal of plant nutrition and soil science, 169(5), 691–698. doi:

Siddiqi, M. Y., Malhotra, B., Min, X., and Glass, A. D. M. (2002). Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. Journal of Plant Nutrition and Soil Science, 165(2), 191–197. doi:<191: AID-JPLN191>3.0.CO; 2-D.

Soltanpour, P. N., Johnson, G. W., Workman, S. M., Jones, J. B., and Miller. R. O. (1996). Inductively coupled plasma emission spectrometry and inductively coupled plasma mass spectrometry. P. 91‒139. In: D.L. Sparks (ed.). Methods of soil analysis. Part 3. Chemical Methods. Soil Science 398 Society of North America. Madison WI. doi:

Stulen, I., and De Kok, L. J. (2012). Foreword: exploring interactions between sulfate and nitrate uptake at a whole plant level. In Plant Sulfur Workshop 1:1–8. doi:

Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R., (2011). Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual review of plant biology, 62: 157–184. doi:

Tischner, R., (2006). Nitrate uptake and reduction in plants. Journal of Crop Improvement, 15(2), 53–95. doi:

Tsabarducas, V., Chatzistathis, T., Therios, I., and Patakas, A. (2017). How nitrogen form and concentration affect growth, nutrient accumulation and photosynthetic performance of Olea europaea L. (cv. ‘Kalamon’). Scientia horticulturae, 218: 23-29. doi:

Zhu, G. H., Zhuang, C. X., Wang, Y. Q., Jiang, L. R., and Peng, X. X. (2006). Differential expression of rice genes under different nitrogen forms and their relationship with sulfur metabolism. Journal of Integrative Plant Biology, 48(10), 1177–1184. doi:

Zhu, Z., Gerendàs, J., Bendixen, R., Schinner, K., Tabrizi, H., and Sattelmacher Hansen, U. P. (2000). Different tolerance to light stress in NO3− and NH4+ grow Phaseolus vulgaris L. Plant Biology, 2(5), 558–570. doi:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia