Morphometric, physicochemical properties and antiproliferative activity of pigmented maize from Guerrero
PDF (Español (España))

Keywords

pigmented maize
morphometric
physicochemical properties
antiproliferative
RVA
DSC
X ray
phenols
ABTS
DPPH
agricultural economics
anthocyanin
thermal properties
radical activity
antioxidant activity
oxidative stress
bioactive compounds
Folin-Ciocalteu method
nixtamal maíces pigmentados
morfométrico
propiedades fisicoquímicas
antiproliferativo
RVA
DSC
rayos X
fenoles
ABTS
DPPH
economía agrícola
antocianinas
propiedades térmicas
actividad antirradicalaria
actividad antioxidante
tortilla
estrés oxidativo
compuestos bioactivos
método de Folin-Ciocalteu
nixtamal

How to Cite

Maldonado-Astudillo , Y. I. ., Gutiérrez González, A. A. ., Flores Rogel, Y. L. ., Arámbula Villa, G., Flores Casamayor, V., Jiménez-Hernández, J., Ramírez, M. ., Álvarez Fitz, P., & Salazar López, R. (2021). Morphometric, physicochemical properties and antiproliferative activity of pigmented maize from Guerrero. Nova Scientia, 13(27). https://doi.org/10.21640/ns.v13i27.2825

Abstract

Introduction: in Guerrero, a wide variety of pigmented maize is found. However, there are not alternatives to generate added value, as well as positive impact on the producer’s economy.

Method: in this study, the morphometric (thousand grain weight, test weight, hardness, whole grain parts and color), physicochemical (bromatological analysis, phenolic and anthocyanin content, X-ray pattern, thermal and paste properties and the scavenging radical activity), as well as the antiproliferative activity (MDA-MB-231 cell line) from pigmented maize (red, black, purple, and white) were evaluated.

Results: the physicochemical properties varied depending on the maize pigmentation. The corn kernels showed adequate morphometric characteristics for the masa and tortilla industry. The maximum viscosity was observed in purple maize starch. The highest value of ΔHgel was observed for black maize (7.88 J g-1). With the exception of purple maize, the analyzed corn kernels showed a high protein content (8.08-8.71 %). The highest content of total phenols (14.7-11.7 mgEAG g-1 extract), monomeric anthocyanins (528 - 154 μg EC3G g-1 extract) and activity against DPPH (CI50 < 200 µg mL-1) and ABTS (CI50 < 236 µg mL-1 radicals were shown by purple maize. The black maize extract showed the highest antiproliferative activity (CI50 = 938 µg mL-1) in the MDA-MB-231 cell line.

Discussion or conclusion: Regardless of color, the analyzed corn kernels have characteristics that are useful for the starch and masa and tortilla industries. Pigmented maize, mainly black and purple, are a promising option for obtaining bioactive compounds for the establishment of novel strategies for the prevention and therapy of diseases associated with oxidative stress.

https://doi.org/10.21640/ns.v13i27.2825
PDF (Español (España))

References

AACCInternational. (2017). Approved Methods of the American Association of Cereal Chemists (11th ed.). American Association of Cereal Chemists.

Agama-Acevedo, E., De La Rosa, A. P. B., Méndez-Montealvo, G., y Bello-Pérez, L. A. (2008). Physicochemical and biochemical characterization of starch granules isolated of pigmented maize hybrids. Starch/Staerke, 60(8), 433–441. https://doi.org/10.1002/star.200800206

Agama-Acevedo, E., Salinas-Moreno, Y., Pacheco-Vargas, G., y Bello-Pérez, L. A. (2011). Características físicas y químicas de dos razas de maíz azul: morfología del almidón. Revista Mexicana de Ciencias Agrícolas, 2(3), 317–329.

Balet, S., Guelpa, A., Fox, G., y Manley, M. (2019). Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. Food Analytical Methods, 12(10), 2344–2360. https://doi.org/10.1007/s12161-019-01581-w

Bello-Pérez, L. A., Camelo-Mendez, G. A., Agama-Acevedo, E., y Utrilla-Coello, R. G. (2016). Aspectos nutracéuticos de los maíces pigmentados: Digestibilidad de los carbohidratos y antocianinas. Agrociencia, 50(8), 1041–1063.

Cabrera-Soto, M. L., Salinas-Moreno, Y., Velázquez-Cardelas, G. A., y Trujillo, E. E. (2009). Contenido de fenoles solubles e insolubles en las estructuras del grano de maíz y su relación con propiedades físicas. Agrociencia, 43(8), 827–839.

Cázares-Sánchez, E., Chávez-Servia, J. L., Salinas-Moreno, Y., Castillo-González, F., y Ramírez-Vallejo, P. (2015). Variación en la composición del grano entre poblaciones de maíz (Zea mays L.) nativas de Yucatán, México. Agrociencia, 49(1), 15–30.

Cheetham, N. W. H., y Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284. https://doi.org/10.1016/S0144-8617(98)00007-1

Chiotelli, E., y Meste, M. Le. (2002). Effect of Small and Large Wheat Starch Granules on Thermomechanical Behavior of Starch. Cereal Chemistry, 79(2), 286–293.

Choi, Y., Jeong, H. S., y Lee, J. (2007). Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chemistry, 103(1), 130–138.

https://doi.org/10.1016/j.foodchem.2006.08.004

CONABIO. (2020). Razas de maíz de México. Comisión Nacional Para El Conocimiento y Uso de La Biodiversidad. https://www.biodiversidad.gob.mx/diversidad/alimentos/maices/razas-de-maiz

De La Parra, C., Serna Saldivar, S. O., y Liu, R. H. (2007). Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. Journal of Agricultural and Food Chemistry, 55(10), 4177–4183.

https://doi.org/10.1021/jf063487p

Del Pozo-Insfrán, D., Brenes, C. H., Serna Saldivar, S. O., y Talcott, S. T. (2006). Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Research International, 39(6), 696–703. https://doi.org/10.1016/j.foodres.2006.01.014

Delegación SADER Guerrero. (2019). El Maíz en Guerrero un tesoro en la gastronomía. https://www.gob.mx/agricultura/guerrero/articulos/el-maiz-en-guerrero-un-tesoro-en-la-gastronomia?idiom=es

Escalante-Aburto, A., Ramírez-Wong, B., Torres-Chávez, P. I., Barrón-Hoyos, J. M., Dios, J. De, y Jaime, F.-C. (2013). La nixtamalización y su efecto en el contenido de antocianinas de maíces pigmentados, una revisión. Revista Fitotecnia Mexicana, 36(4), 429–437. https://doi.org/10.35196/rfm.2013.4.429

Figueroa-Cárdenas, J. de D., Narváez González, D. E., Sánchez, A. M., Taba, S., Martínez, M. G., Véles Medina, J. J., Sánchez, F. R., y Cuevas, F. A. (2013). Propiedades Físicas Del Grano Y Calidad De Los Grupos Raciales De Maíces Nativos (Criollos) De México. Revista Fitotecnia Mexicana, 36(SUPPL.3), 305–314. https://doi.org/10.35196/rfm.2013.3-s3-a.305

Gaytan-Martinez, M., Figueroa-Cardenas, J. de D., Reyes-Vega, M. de la L., Morales-Sanchez, E., y Rincon-Sanchez, F. (2013). Maize Landraces Selection for Industrial End-Use Based on Their Added Value. Revista Fitotecnia Mexicana, 36(3A), 339–346. https://doi.org/10.35196/rfm.2013.3-S3-A.339

Gebre-Mariam, T., y Schmidt, P. C. (1998). Some physico-chemical properties of dioscorea starch from Ethiopia. Starch/Staerke, 50(6), 241–246. https://doi.org/10.1002/(sici)1521-379x(199806)50:6<241::aid-star241>3.3.co;2-i

Geran, R., Greenberg, N., MacDonald, M., Schumacher, A., y Abbott, B. (1972). National Cancer Institute protocols for screening of anticancer compounds. Cancer Chemother Rep, 3, 1–103.

Gómez-Montiel, N. O., Cantú-Almaguer, M. Á., Vázquez-Carrillo, M. G., Castillo-Gonzalez, F., Hernández-Galeno, C. D. Á., Aragón-Cuevas, F., Espinosa-Calderón, A., y Palemón-Alberto, F. (2017). Híbrido varietal HV-240: nueva alternativa de maíz para la montaña baja de

Guerrero. Revista Mexicana de Ciencias Agrícolas, 8(5), 1219.

https://doi.org/10.29312/remexca.v8i5.122

Gonzalez, R. J., Torres, R., De Greef, D., Bonaldo, A., Robutti, J., y Borrás, F. (2005). Efecto de la dureza del endospermo del maíz sobre las propiedades de hidratación y cocción. Archivos Latinoamericanos de Nutricion, 55(4), 354-360.

Gregório, B. M., De Souza, D. B., Nascimento, F. A. M., Matta, L., y Fernandes-Santos, C. F. (2016). The Potential Role of Antioxidants in Metabolic Syndrome. Current Pharmaceutical Design, 22(7), 859–869. https://doi.org/10.2174/1381612822666151209152352

Herrera-Sotero, M. Y., Cruz-Hernández, C. D., Oliart-Ros, R. M., Chávez-Servia, J. L., Guzmán-Gerónimo, R. I., González-Covarrubias, V., Cruz-Burgos, M., y Rodríguez-Dorantes, M. (2019). Anthocyanins of Blue Corn and Tortilla Arrest Cell Cycle and Induce Apoptosis on Breast and Prostate Cancer Cells. Nutrition and Cancer, 0(0), 1–10.

https://doi.org/10.1080/01635581.2019.1654529

Herrera-Sotero, M. Y., Cruz-Hernández, C. D., Trujillo-Carretero, C., Rodríguez-Dorantes, M., García-Galindo, H. S., Chávez-Servia, J. L., Oliart-Ros, R. M., y Guzmán-Gerónimo, R. I. (2017). Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chemistry Central Journal, 11(1), 1–8. https://doi.org/10.1186/s13065-017-0341-x

Hodzic, Z., Pasalic, H., Memisevic, A., Srabovic, M., Saletovic, M., y Poljakovic, M. (2009). The influence of total phenols content on antioxidant capacity in the whole grain extracts. European Journal of Scientific Research, 28(3), 471–477.

Jiménez-Juárez, J., Arámbula-Villa, G., Cruz-Lázaro, E. de la, Aparicio-Trapala, M., Arámbula-Villa, G., La Cruz-Lázaro, E., y Aparicio Trápala, M. (2012). Característica del grano, masa y tortilla producida con diferentes genotipos de maíz del trópico mexicano. Universidad y Ciencia, 28(2), 145–152. https://doi.org/10.19136/era.a28n2.22

Kurilich, A. C., y Juvik, J. A. (1999). Quantification of Carotenoid and Tocopherol Antioxidants in Zea mays. Journal of Agricultural and Food Chemistry, 47(5), 1948–1955. https://doi.org/10.1021/jf981029d

Lao, F., y Sigurdson, G. T. (2017). Health Benefits of Purple Corn ( Zea mays L .) Phenolic Compounds. Comprehensive Reviews in Food Science and Food Safety, 16(2), 234–246.

https://doi.org/10.1111/1541-4337.12249

Lee, J., Durst, R. W., y Wrolstad, R. E. (2005). Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. Journal of AOAC International, 88(5), 1269–1278. https://doi.org/10.1016/j.foodres.2015.05.015

Loarca-Piña, G., Neri, M., Figueroa, J. de D., Castaño-Tostado, E., Ramos-Gómez, M., Reynoso, R., y Mendoza, S. (2019). Chemical characterization, antioxidant and antimutagenic evaluations of pigmented corn. Journal of Food Science and Technology, 56(7), 3177–3184.

https://doi.org/10.1007/s13197-019-03671-3

Lopez-Martinez, L. X., Oliart-Ros, R. M., Valerio-Alfaro, G., Lee, C. H., Parkin, K. L., y Garcia, H. S. (2009). Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT - Food Science and Technology, 42(6), 1187–1192.

https://doi.org/10.1016/j.lwt.2008.10.010

Martínez-Martínez, R., Vera-Guzmán, A. M., Chávez-Servia, J. L., Bolaños, E. N. A., Carrillo-Rodríguez, J. C., y Pérez-Herrera, A. (2019). Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia, 44(9), 549–556.

Mauricio, R., Figueroa, J. de D., Taba, S., Reyes, M. de la L., Rincón, F., y Mendoza, A. (2004). Tortilla characterization of maize accessions by grain and tortilla quality traits. Revista Fitotecnia Mexicana, 27(3), 213–222.

Mendoza-Díaz, S., Ortiz-Valerio, M. del C., Castaño-Tostado, E., Figueroa-Cárdenas, J. de D., Reynoso-Camacho, R., Ramos-Gómez, M., Campos-Vega, R., y Loarca-Piña, G. (2012). Antioxidant Capacity and Antimutagenic Activity of Anthocyanin and Carotenoid Extracts from Nixtamalized Pigmented Creole Maize Races (Zea mays L.). Plant Foods for Human Nutrition, 67(4), 442–449. https://doi.org/10.1007/s11130-012-0326-9

Mendoza-Mendoza, C. G., Mendoza-Castillo, M. C., Delgado-Alvarado, A., Castillo-González, F., y Cruz-Izquierdo, T. Á. K.-Y. S. (2017). Antocianinas totales y parámetros de color en líneas de maíz morado. Revista Fitotecnia Mexicana ,40(4), 471–479. https://doi.org/10.35196/rfm.2017.4.471-479

Mex, R., Garma, P., Bolívar, N., y Guillén, M. (2016). Análisis Proximal y Fitoquímico de Cinco Variedades de Maíz del Estado de Campeche (México). Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. s

Moreno, Y. S., Sánchez, G. S., Hernández, D. R., y Lobato, N. R. (2005). Characterization of Anthocyanin Extracts from Maize Kernels. Journal of Chromatographic Science, 43(9), 483-487. https://doi.org/10.1093/chromsci/43.9.483

Navarro-Garza, H., Hernández-Flores, M., Castillo-González, F., y Pérez-Olvera, M. A. (2012). Diversidad Y Caracterización De Maíces Criollos. Estudio De Caso En Sistemas De Cultivo En La Costa Chica De Guerrero. México Agricultura, Sociedad y Desarrollo, 9(2), 149-165.

Palemón-Alberto, F., Reyes-García, G., Vargas-Álvarez, D., Damián-Nava, A., Hernández-Castro, E., Juárez-López, P., y Cruz-Lagunas, B. (2017). Rendimiento de maíces cultivados en la región Tierra Caliente, Guerrero, México. Acta Agrícola y Pecuaria, 3(1), 1–7.

https://doi.org/10.30973/aap/2017.3.1/1

Ramírez-Reynoso, O., Escobar-Álvarez, J. L., Maldonado-Peralta, M. D. los Á., Rojas-García, A. R., Hernández-Castro, E., y Valenzuela-Lagarda, J. L. (2020). Calidad de mazorca y grano en maíces criollos de la Costa Chica, Guerrero. Revista Mexicana de Ciencias Agrícolas, 24, 239–246. https://doi.org/10.29312/remexca.v0i24.2374

Rouf-Shah, T., Prasad, K., y Kumar, P. (2016). Maize-A potential source of human nutrition and health: A review. Cogent Food & Agriculture, 2(1), 1–9.

https://doi.org/10.1080/23311932.2016.1166995

Salinas-Moreno, Y., y Aguilar-Modesto, L. (2010). Effect of maize (Zea mays L.) grain hardness on yield and quality of tortilla. Ingeniería Agrícola y Biosistemas, 2(1), 5–11. https://doi.org/http://dx.doi.org/10.5154/r.inagbi.2010.08.009

Salinas-Moreno, Y., Aragón-Cuevas, F., Ybarra-Moncada, C., Aguilar-Villarreal, J., Altunar-López, B., y Sosa-Montes, y. E. (2013). Caracterización física y composición química de razas de maíz de grano azul/morado de las regiones tropicales y subtropicales de Oaxaca. Revista Fitotecnia Mexicana, 36(1), 23–31.

Sánchez, J. J., Goodman, M. M., y Stuber, C. W. (2000). Isozymatic and morphological diversity in the races of maize of Mexico. Economic Botany, 54(1), 43–59.

https://doi.org/10.1007/bf02866599

Santiago-Ramos, D., Figueroa-C, J. D. D., y Mariscal-Moreno, R. M. (2017). Changes in the thermal and structural properties of maize starch during nixtamalization and tortilla-making processes as affected by grain hardness. Journal of Cereal Science, 74, 72–78. https://doi.org/10.1016/j.jcs.2017.01.018

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., y Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675.

https://doi.org/10.1016/j.jfca.2006.01.003

United States Department of Agriculture [USDA]. (2021). Grain: world markets and trade. https://www.fas.usda.gov/data/grain-world-markets-and-trade

Urias-Lugo, D. A., Heredia, J. B., Muy-Rangel, M. D., Valdez-Torres, J. B., Serna-Saldívar, S. O., y Gutiérrez-Uribe, J. A. (2015). Anthocyanins and Phenolic Acids of Hybrid and Native Blue Maize (Zea mays L.) Extracts and Their Antiproliferative Activity in Mammary (MCF7), Liver (HepG2), Colon (Caco2 and HT29) and Prostate (PC3) Cancer Cells. Plant Foods for Human Nutrition, 70(2), 193–199. https://doi.org/10.1007/s11130-015-0479-4

Vázquez-Carrillo, M. G., y Santiago-Ramos, D. (2019). The RVA as a rapid tool to screen maize genotypes for the tortilla-making process in a breeding program. Journal of Cereal Science, 86(8), 22–25. https://doi.org/10.1016/j.jcs.2018.12.021

Yang, Z., y Zhai, W. (2010). Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science and Emerging Technologies, 11(1), 169–176. https://doi.org/10.1016/j.ifset.2009.08.012

Zepeda-Bautista, R., Carballo-Carballo, A., y Hernández-Aguilar, C. (2009). Interacción genotipo-ambiente en la estructura y calidad del nixtamal-tortilla del grano en híbridos de maíz. Agrociencia, 43(7), 695–706.

Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., y Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231. https://doi.org/https://doi.org/10.1021/jf204367z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia