Abstract
Introduction: Chronic stress in dairy cattle is one of the biggest problems for milk production since it reduces its production, diseases increase and reproduce less, and the main cause is the weather. Heat stress has been studied for many years, but the most used parameter is the temperature and humidity index (THI), this comes from meteorological measurements and not from the changes that occur in the cow's body.
Method: To find the relationship between THI and the body's response to stress, we sampled hair from 50 Holstein cows every two months from an automated intensive dairy farm for one year, extracted the accumulated cortisol and measured it using the ELISA technique. We also obtained the climatological measurements from the local meteorological reports to calculate the THI and the averages for each period. By means of a multiple regression analysis, the correlation of the bimonthly cortisol concentrations with the averages of temperature, humidity, wind and THI in the same periods was calculated.
Results: The changes in cortisol levels in each period were significantly different from the previous one. The multiple regression analysis showed THI as the main regressor (p < 0.001).
Discussion: The results showed the THI significantly related to the levels of cortisol in hair, this shows that the THI is a reliable parameter, if not to calculate the physiological stress, but to indirectly know the stress that weather can cause and make decisions in the farms of dairy cattle.
References
Accorsi, P., Carloni, E., Valsecchi, P., Viggiani, R., Gamberoni, M., Tamanini, C., y Seren, E. (2008). Cortisol determination in hair and faeces from domestic cats and dogs. Gen Comp Endocrinol, 155(2), 398-402. DOI: https://doi.org/10.1016/j.ygcen.2007.07.002
Allen, J., Hall, L., Collier, R., y Smith, J. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of Dairy Science, 98(1), 118-127. DOI: https://doi.org/10.3168/jds.2013-7704
Armstrong, D. (1994). Heat stress interaction with shade and cooling. Journal of Dairy Science, 77(7), 2044 - 2050. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77149-6
Berman, A., Horovitz, T., Kaim, M., y Gacitua, H. (2016). A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. International Journal of Biometeorology, 60, 1453-1462. DOI: https://doi.org/10.1007/s00484-016-1136-9
Bianca, W. (1962). Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature, 195, 251-252. DOI: https://doi.org/10.1038/195251a0
Bohmanova, J., Misztal, I., y Cole, J. (2007). Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. Journal of Dairy Science, 90(4), 1947-1956. DOI: https://doi.org/10.3168/jds.2006-513
Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., y Belyea, R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, EDP Sciences, 51(6), 479-491. DOI: https://doi.org/10.1051/animres:2002036
Brügemann, K., Gernand, E., König von Borstel, U., y König, S. (2012). Defining and evaluating heat stress thresholds in different dairy cow production systems. Archiv Tierzucht, 55(1), 13-24. DOI: https://doi.org/10.5194/AAB-55-13-2012
Bryan, H., Darimont, C., Paquet, P., Wynne-Edwards, K., y Smits, J. (2013). Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche. PLoS One, 8, 1-10. DOI: https://doi.org/10.1371/journal.pone.0080537
Bucklin, R., Bray, D., Martin, J., Carlos, L., y Carvalho, V. (2009). Enviromental temperatures in Florida dairy housing. Appl. Eng. Agric., 25, 727-735. DOI: https://doi.org/10.13031/2013.28851
Carlitz, E., Miller, R., Kirschbaum, C., Gao, W., Hänni, D., y van Schaik, C. (2016). Measuring hair cortisol concentrations to assess the effect of anthropogenic impacts on wild chimpanzees (Pan troglodytes). PLoS One, 11, e0151870. DOI: https://doi.org/10.1371/journal.pone.0151870
Comin, A., Prandi, A., Peric, T., Corazzin, M., Dovier, S., y Bovolenta, S. (2011). Hair cortisol levels in dairy cows from winter housing to summer highland grazing. Livestock Science, 138(1-3), 69-73. DOI: https://doi.org/10.1016/j.livsci.2010.12.009
Coppock, C., Grant, P., Portzer, S., Charles, D., y Escobosa, A. (1981). Lactating dairy cow responses to dietary sodium, chloride, and bicarbonate during hot weather. Journal of Dairy Science, 65(4), 566 - 576. DOI: https://doi.org/10.3168/jds.S0022-0302(82)82234-0
Craine, J., Elmore, A., Olson, K., y Tolleson, D. (2010). Climate change and cattle nutritional stress. Global Change Biology, 16(10), 2901-2911. DOI: https://doi.org/10.1111/j.1365-2486.2009.02060.x
da Costa, A., Feitosa, J., Montezuma Jr., P., de Souza, P., y de Araújo, A. (2015). Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil. Int J Biometeorol, 59(11). DOI: 10.1007/s00484-015-0971-4
Davenport, M., Tiefenbacher, F., Lutz, C., Novak, M., y Meyer, J. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol, 147, 255-61. DOI: https://doi.org/10.1016/j.ygcen.2006.01.005
Gantner, V., Mijić, P., Kuterovac, K., Solić, V., y Gantner, R. (2011). Temperature-humidity index values and their significance on the daily production of dairy cattle. Mljekarstvo, 61(1), 56-63. DOI: https://doi.org/10.1051/animres:2002036
Gauly, M., Bollwein, H., Breves, G., Brügemann, K., Dänicke, S., Daş, G., Demeler, J., Hansen, H., Isselstein, J., Konig, S., Loholter, M., Martinsohn, M., Meyer, U., Potthoff, M., Sanker, C., Schroder, B., Wrage, N., Meibaum, M., von Samson-Himmelstjerna, G., Stinshoff, H. y Wrenzycki, C. (2012). Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe - A review. Animal, 7(5), 1-17. DOI: https://doi.org/10.1017/S1751731112002352
Grandin, T. (1997). Assesment of stress during handling and transport. J Anim Sci, 75(1), 249-257. DOI: https://doi.org/10.2527/1997.751249x
Habeeb, A., Gad, A., y Atta, M. (2018). Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. Int J Biotechnol Recent Adv, 1(1), 35-50. DOI: https://doi.org/10.18689/ijbr-1000107
Hansen, P. (2007). Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology, 68(1), S242–S249. DOI: https://doi.org/10.1016/j.theriogenology.2007.04.008
Hudson, S., Mullford, M., Whittlestone, W., y Payne, E. (1974). Bovine plasma corticoids during partirition. Journal of Dairy Science, 59(4), 744-746. DOI: https://doi.org/10.3168/jds.S0022-0302(76)84267-1
Johnson, H. (1987). Bioclimatology and the adaptation of livestock. New York: Elsevier.
Kadzere, C., Murphy, M., Silanikove, M., y Maltz, E. (2002). Heat stress in lactating dairy cows: A review. Livest. Prod. Sci., 77(1), 59-91. DOI: https://doi.org/10.1016/S0301-6226(01)00330-X
Kibler, H., y Brody, S. (1950). Environmental physiology with special reference to domestic animals. X. Influence of temperature 5° to 95 °F on evaporative cooling from the respiratory and exterior surfaces in Jersey and Holstein cows. University of Missouri. Agricultural Experiment Station. Research bulletin, 461.
Könyves, T., Zlatković, N., Memiši, N., Lukač, D., Puvača, N., Stojšin, M., Halász, A. y Miščević, B. (2017). Relationship of temperature-humidity index with milk production and feed intake of holstein-frisian cows in different year seasons. Thai J Vet Med., 47(1), 15-23.
Koren, L., Mokady, O., Karaskov, T., Klein, J., Koren, G., y Geffen, E. (2002). A novel method using hair for determining hormonal levels in wildlife. Anim Behav, 63(2), 403-6. DOI: https://doi.org/10.1006/anbe.2001.1907
Mader, T., D. M., y Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci., 84(3), 712-719. DOI: https://doi.org/10.2527/2006.843712x
Meyer, J. y Novak, M. (2012). Minireview: Hair cortisol: a novel biomarker of hypothalamic-pituitary- adrenocortical activity. Endocrinology, 153(9), 4120-4127. DOI: https://doi.org/10.1210/en.2012-1226
Moberg, G. (2000). Biological response to stress: implication for animal welfare. En G. Moberg, y G. Mench. The biology of animal stress (123-146). Wallingford, Oxon, UK: CABI Publishing. DOI: https://doi.org/10.1079/9780851993591.0001
Nascimento, F., Aguiar, H., Rodrigues, G., Guimarães, E., Carvalho, E., y Nascimento, M. (2019). What is the best temperature-humidity index equation to indicate heat stress in crossbred dairy calves in a tropical environment? Ciência Rural, 49(1), e20180132. DOI: http://dx.doi.org/10.1590/0103-8478cr20180132
National Research Counsil. (1971). A Guide to Environmental Research on Animals. Washington, D.C.: National Academy of Science.
Osei-Amponsah, R., Dunshea, F., Leury, B., Cheng, L., Cullen, B., Joy, A., Abhijith, A., Zhang, M. H. y Chauhan, S. (2020). Heat stress Impacts on lactating cows grazing australian summer pastures on an automatic robotic dairy. Animals, 10(5), 869. DOI: https://doi.org/10.3390/ani10050869
Park, S., Kim, S., Shin, N., y Hwang, C. (2016). Elevated cortisol content in dog hair with atopic dermatitis. Jpn. J. Vet. Res., 64(2), 123-129. DOI: https://doi.org/10.14943/jjvr.64.2.123
Polsky, L., y von Keyserlingk, M. (2017). Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645-8657. DOI: https://doi.org/10.3168/jds.2017-12651
Russell, E., Koren, G., Rieder, M., y Van Uum, S. (2011). Hair cortisol as a biological marker of chronic stress: current status, future directions, and unanswered questions. Psychoneuroendocrinology, 37(5), 589-601. DOI: https://doi.org/10.1016/j.psyneuen.2011.09.009
Sheriff, M., D. B., Delehanty, B., Palme, R., y Boonstra, R. (2011). Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia, 166(4), 869-887. DOI: https://doi.org/10.1007/s00442-011-1943-y
Shi, R., Dou, J., Liu, J., Sammad, A., Lou, H., Wang, Y., Guo, G. y Wang, Y. (2021). Genetic parameters of hair cortisol as an indicator of chronic stress under different environments in Holstein cows. Journal of Dairy Science, 104(6), 6985-6999. DOI: 10.3168/jds.2019-17856
Sistema de Agua Potable y Alcantarillado de León (SAPAL). (s.f.). Recuperado el 20 de Mayo de 2017, de Estaciones Meteorológicas: http://www.sapal.gob.mx/est-meteorologicas
Stull, C., Messam, L., Collar, C., Peterson, N., Castillo, A., Reed, B., Andersen, K. L. y VerBoort, W. (2008). Precipitation and Temperature Effects on Mortality and Lactation Parameters of Dairy Cattle in California. Journal of Dairy Science. 91(12), 4579–4591. DOI: https://doi.org/10.3168/jds.2008-1215
Thom, E. (1959). The discomfort index. Weatherwise, 12(2), 57-59. DOI: https://doi.org/10.1080/00431672.1959.9926960
Trevisan, C., Montillo, M., Prandi, A., Mkupasi, E., Ngowi, H., y Johansen, M. (2017). Hair cortisol and dehydroepiandrosterone concentrations in naturally Taenia solium infected pigs in Tanzania. Gen. Comp. Endocrinol., 246, 23-28. DOI: https://doi.org/10.1016/j.ygcen.2017.03.007
Trevisi, E., y Bertoni, G. (2009). Some physiological and biochemical methods for acute and chronic stress evaluation in dairy cows. Ital. J. Anim. Sci., 8(1), 265-286. DOI: 10.4081/ijas.2009.s1.265
Uetake, K., Morita, S., Sakagami, N., Yamamoto, K., Hashimura, S., y Tanaka, T. (2018). Hair cortisol levels of lactating dairy cows in cold- and warm-temperate regions in Japan. Anim. Sci. J, 89(2), 494-497. DOI: https://doi.org/10.1111/asj.12934
West, J. (1994). Interactions of energy and bovine somatotropin with heat stress. Journal of Dairy Science, 77(7), 949-956. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77152-6
Wood, S. (1991). Interactions between hypoxia and hypothermia. Annu. Rev. Physiol., 53, 71-85. DOI: https://doi.org/10.1146/annurev.ph.53.030191.000443
Yano, M., S. H., y Endo, T. (2014). Modelling temperature effects on milk production: a study on Holstein cows at a Japanese farm. SpringerPlus, 3, 129. DOI: https://doi.org/10.1186/2193-1801-3-129
Yousef, M., y Leonard, B. (1985). Stress physiology in livestock (Vol. 1). Boca Raton, FL.: CRC Press. DOI: https://doi.org/10.1002/smi.2460020413
Zare-Tamami, F., Hafezian, H., Rahimi-Mianji, G., Abdullahpour, R., y Gholizadeh, M. (2018). Effect of the temperature-humidity index and lactation stage on milk production traits and somatic cell score of dairy cows in Iran. Songklanakarin J. Sci. Technol, 40(2), 379-383. DOI: https://doi.org/10.14456/sjst-psu.2018.36

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2021 Nova Scientia