Methane production modelling from cheese whey and livestock excreta anaerobic co-digestion
PDF (Español (España))

Keywords

biodigestor
residuo
inóculo
biomasa
Modelo de Gompertz
modelo de Richards
modelos logísticos
crecimiento exponencial
biometano
biodigestión
biodigestores anaeróbicos
sigmoidal
potencial bioquímico de metano
BMP
biogás biodigester
waste
inoculum
biomass
Gompertz model
Richards model
logistic models
exponential maximum growth
biomethane
biodigestion
anaerobic biodigester
sigmoidal
biochemical methane potential
biogas

How to Cite

López-Aguilar, H. ., Barrón, A., Franco, M., Paz, A., & Pérez-Hernández, A. (2021). Methane production modelling from cheese whey and livestock excreta anaerobic co-digestion. Nova Scientia, 13(27). https://doi.org/10.21640/ns.v13i27.2791

Abstract

Introduction: the production of biogas is a sustainable alternative for the energy use of organic waste. This investigation presents the study and modeling of biogas production, generated by the co-digestion of livestock excreta and cheese whey.              

Method: Anaerobic Digestion (DA) experiments were carried out, using hermetic reactors, at room temperature monitored for 75 consecutive days based on the biochemical methane potential (BMP) method. The logistic models were used: exponential maximum growth, Gompertz and Richards modified to represent the kinetics of the methane production phenomenon.

Results and discussions: the maximum methane production rate, the duration of the lag phase, and the accumulated methane production potential were determined. The residual sum of squares and the correlation coefficient were compared to identify the mathematical model that best describes the phenomenon. It was found that there is a potential for the generation of biogas and the use of the residues experienced in this work in co-digestion.

Conclusions: experimentation and mathematical modeling allowed to describe the phenomenon of biogas production, with residues from the dairy industry and livestock systems. The results of the research show the potential to incentivize energy production in the regional agricultural sector, based on DA technology, taking advantage of the dairy industry waste under the concept of circular economy.

https://doi.org/10.21640/ns.v13i27.2791
PDF (Español (España))

References

Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N. y Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource technology, 101(16), 6368-6373. https://doi.org/10.1016/j.biortech.2010.03.071

Asunis, F., De Gioannis, G., Dessì, P., Isipato, M., Lens, P. N., Muntoni, A. y Spiga, D. (2020). The dairy biorefinery: integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 276, 111240. https://doi.org/10.1016/j.jenvman.2020.111240

Aghdam, E. F., Scheutz, C. y Kjeldsen, P. (2017). Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture, and metals. Waste Management, 63, 226-237. https://doi.org/10.1016/j.wasman.2016.11.023

Al Seadi, T. (2008). Biogas handbook. (2008 ed.) Syddansk Universitet.

Altaş, L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of hazardous materials, 162(2-3), 1551-1556. https://doi.org/10.1016/j.jhazmat.2008.06.048

Almomani, F. y Bhosale, R. (2020). Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere, 126805. https://doi.org/10.1016/j.chemosphere.2020.126805

APHA, A. (1999). WEF-Method 2540 E—Fixed and volatile Solids lgnited at 550 C. Standard Methods for the examination of water and wastewater Washington.

Carlini, M., Castellucci, S. y Moneti, M. (2015). Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia, 82, 811-818. DOI: https://doi.org/10.1016/j.egypro.2015.11.817

Castrillón, L., Fernández-Nava, Y., Ormaechea, P. y Marañón, E. (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresource technology, 102(17), 7845-7849. https://doi.org/10.1016/j.biortech.2011.05.047

Elagroudy, S., Radwan, A. G., Banadda, N., Mostafa, N. G., Owusu, P. A. y Janajreh, I. (2020). Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge. Renewable Energy, 155, 1009-1020. https://doi.org/10.1016/j.renene.2020.03.166

Fernández-Rodríguez, M. J., Puntano, N. F., Mancilla-Leytón, J. M. y Borja, R. (2021). Batch mesophilic anaerobic co-digestion of spent goat batch mesophilic anaerobic co-digestion of spent goat straw bedding and goat cheese whey: Comparison with the mono-digestion of the two sole substrates. Journal of Environmental Management, 280, 111733. https://doi.org/10.1016/j.jenvman.2020.111733

Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Rüsch Pfund, F., Strömberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H. y Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522. http://dx.doi.org/10.2166/wst.2016.336.

Imeni, S. M., Pelaz, L., Corchado-Lopo, C., Busquets, A. M., Ponsá, S. y Colón, J. (2019). Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Bioresource technology, 291, 121872. https://doi.org/10.1016/j.biortech.2019.121872

Kong, X., Xu, S., Liu, J., Li, H., Zhao, K. y He, L. (2016). Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization. Journal of environmental management, 166, 31-37. https://doi.org/10.1016/j.jenvman.2015.10.002

Li, L., Kong, X., Yang, F., Li, D., Yuan, Z. y Sun, Y. (2012). Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied biochemistry and biotechnology, 166(5), 1183-1191. https://doi.org/10.1007/s12010-011-9503-9

Li, W., Khalid, H., Amin, F. R., Zhang, H., Dai, Z., Chen, C. y Liu, G. (2020). Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion. Renewable Energy, 157, 1081-1088. https://doi.org/10.1016/j.renene.2020.04.035

Lovrenčec, L., Sraka, S., Sinergija, R. A., Yavachev, L., Adamescu, E. M. y Grup, T. (2011). IEE Project ‘BiogasIN’.

Magaña-Ramírez, J. L., Rubio-Núñez, R., Jiménez-Islas, H. y Martínez-García, M. T. (2011). Tratamiento anaerobio de desechos lácticos y estiércol de cabra. Ingeniería e investigación, 31(1), 93-98. https://www.redalyc.org/articulo.oa?id=64321170011

Moset, V., Al-zohairi, N. y Møller, H. B. (2015). The impact of inoculum source, inoculum to substrate ratio and sample preservation on methane potential from different substrates. Biomass and Bioenergy, 83, 474-482. https://doi.org/10.1016/j.biombioe.2015.10.018

Muthu, D., Venkatasubramanian, C., Ramakrishnan, K. y Sasidhar, J. (2017). Production of biogas from wastes blended with cowdung for electricity generation-a case study. IOP Conf. Series, Earth Environ. Sci, 80(1). 012055. https://doi.org/10.1088/1755-1315/80/1/012055

Náthia-Neves, G., Berni, M., Dragone, G., Mussatto, S. I. y Forster-Carneiro, T. (2018). Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 15(9), 2033-2046. https://doi.org/10.1007/s13762-018-1682-2

Navarro, S. L. B., Lanuza, D. S. Z., Ramírez, J. C. A. y Calero, J. A. Z. (2014). Evaluación de la producción de biogás a partir de suero lácteo a escala de laboratorio. Revista Ciencia y Tecnología El Higo, 4(1), 29-35. https://doi.org/10.5377/elhigo.v4i1.8633

Nguyen, D. D., Jeon, B. H., Jeung, J. H., Rene, E. R., Banu, J. R., Ravindran, B. y Chang, S. W. (2019). Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresource technology, 280, 269-276. https://doi.org/10.1016/j.biortech.2019.02.033

Peña Kevin (2021). Producción de biogás a partir de residuos domésticos. Tesis de grado (Ingeniero en Energías Alternativas). Universidad La Salle Chihuahua. Depto. de Ingeniería. Chihuahua, Chihuahua, México.

Pererva, Y., Miller, C. D. y Sims, R. C. (2020). Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing, Their Selection and Numerical Solution. Water, 12(6), 1831. https://doi.org/10.3390/w12061831

Pečar, D. y Goršek, A. (2020). Kinetics of methane production during anaerobic digestion of chicken manure with sawdust and miscanthus. Biomass and Bioenergy, 143, 105820. https://doi.org/10.1016/j.biombioe.2020.105820

Tian, Y., Yang, K. y Zheng, L. (2020) Modelling Biogas Production Kinetics of Various Heavy Metals Exposed Anaerobic Fermentation Process Using Sigmoidal Growth Functions. Waste Biomass Valor, 11, 4837–4848. https://doi.org/10.1007/s12649-019-00810-x

Ware, A. y Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renewable Energy, 104, 50-59. https://doi.org/10.1016/j.renene.2016.11.045

Zwietering, M. H., Jongenburger, I., Rombouts, F. M. y Van't Riet, K. J. A. E. M. (1990). Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.

Zhao, T., Chen, Y., Yu, Q., Shi, D., Chai, H., Li, L. y He, Q. (2019). Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite. PloS one, 14(7), e0218856. https://doi.org/10.1371/journal.pone.0218856

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia