Abstract
The low fertility is one of the greatest problems in mare reproduction. Preovulatory follicle diameter could be used as estrus predictor.
Methods: Forty-three mares, 550 ± 34 kg live weight, 6.00 ± 2.30 years old, and 4.42 ± 0.39 body condition score (CC), without reproductive or sanitary problems were used to study the evolution of follicle diameter (DF) during an estrus cycle. The estrus detection and measurement of DF were done daily, mares with DF > 38 mm were inseminated, pregnancy was tested 16 d post-insemination. Variables evaluated were estrus length (Dcelo) and estrus cycle (Dciclo); DF at 21 d (DF21), at start of estrus (DFcelo), and at artificial insemination (DFIA); corpora luteum diameter lúteo (DCL); and pregnancy rate (TP16). The fixed effects included in the model were age of mare, CC, Dcelo, Dciclo, number of follicles, time to estrus appearance after day 21 (Celoh), DFcelo, and DF21. The statistical analyses were carried out with the MIXED and GLIMMIX procedures of SAS.
Results: Age (p £ 0.0221) and Dcelo (p £ 0.036) were significant for most of the variables analyzed. Mares 9-11 years old had the greatest Dciclo, DCL, and DF. DFcelo was significant (p £ 0.0056) for DCL and DF21; while DF21 was (p £ 0.0001) for Celoh, DFcelo, and DFIA. The follicle growth showed a cubic trend, with a reduction in growth rate days before ovulation.
Conclusion: Age of mare, DF21, and DFcelo, help to predict estrus appearance. Knowledge of ovarian dynamics helps to breed mares at the right time.
References
Allen, W. R., L. Brown, M. Wright y S. Wilsher. (2010). Reproductive efficiency of flatrace and National Hunt Thoroughbred mares and stallions in England. Equine Veterinary Journal, 39(5), 438-445. https://doi.org/10.2746/042516407X1737581.
Aurich, C. (2011). Reproductive cycles of horses. Animal Reproduction Science, 124, 220-228. https://doi.org/10.1016/j.anireprosci.2011.02.005
Barrier-Battut, I., N. Le Poutre, E. Trocherie, S. Hecht, A. G. des Raux, J. L. Nicaise y A. Renault. (2001). Use of buserelin to induce ovulation in the cyclic mare. Theriogenology, 55(8), 1679-1695. DOI: 10.1016/S0093-691X(01)00512-X.
Bosh, K. A., D. Powell, B. Shelton y W. Zent. (2009). Reproductive performance measures among Thoroughbred mares in central Kentucky, during the 2004 mating season. Equine Veterinary Journal, 41, 883-888. https://doi.org/10.2746/042516409X456068.
Brinsko, S. P. (2006). Insemination doses: how low can we go? Theriogenology, 66, 543-550. DOI: 10.1016/j.theriogenology.2006.04.026
Brinsko, S. P., S. L. Rigby, A. C. Lindsey, T. L. Blanchard, C. C. Love y D. D. Varner. (2003). Pregnancy rates in mares following hysteroscopic or transrectally-guided insemination with low sperm numbers at the utero-tubal papilla. Theriogenology, 59, 1001-1009. DOI: 10.1016/s0093-691x(02)01123-8.
Carroll, C. L. y P. J. Huntington. 1988. Body condition scoring and weight estimation of horses. Equine Veterinary Journal, 20(1), 41-45.
Cuervo-Arango, J., J. Aguilar y J. R. Newcombe. (2009). Effect of type of semen, time of insemination relative to ovulation and embryo transfer on early equine embryonic vesicle growth as determined by ultrasound. Theriogenology, 71, 1267-1275. https://doi.org/10.1016/j.theriogenology.2008.12.020
Cuervo-Arango, J. y J. R. Newcombe. (2008). Repeatability of preovulatory follicular diameter and uterine edema pattern in two consecutive cycles in the mare and how they are influenced by ovulation inductors. Theriogenology, 69, 681-687. DOI: 10.1016/j.theriogenology.2007.11.019.
Donadeu, F. X. y H. G. Pedersen. (2008). Follicle development in mares. Reproduction in Domestic Animals, 43, 224-231. https://doi.org/10.1111/j.1439-0531.2008.01166.x.
Educaplus. (2021). Horas diarias de luz. Disponible en: http://www.educaplus.org/geografia/horas-de-luz.html. Consultado el 29 de mayo de 2021.
Fernández R., F., J. E. Hernández P., S. Rodríguez M., y H. D. Velásquez O. (2008). Fertilidad en yeguas cuarto de milla tratadas con gonadotropina coriónica humana (hCG) utilizando semen congelado. Revista Salud Animal, 30(3), 184-188.
Gastal, E. L., M. O. Gastal, M. A. Beg, y O. J. Ginther. (2004).0 Interrelationships among follicles during the common-growth phase of a follicular wave and capacity of individual follicles for dominance in mares. Reproduction, 128, 417-422. https://doi.org/10.1530/rep.1.00259
Gentry, L. R., D. L. Thompson Jr, G. T. Gentry Jr, K. A. Davis, R. A. Godke, y J. A. Cartmill. (2002). The relationship between body condition, leptin, and reproductive and hormonal characteristics of mares during the seasonal anovulatory period. Journal of Animal Science, 80, 2695-2703. DOI: 10.2527/2002.80102695x.
Ginther, O. J., E. L. Gastal, M. O. Gastal, D. R. Bergfelt, A. R. Baerwald, y R. A. Pierson. (2004). Comparative study of the dynamics of follicular waves in mares and women. Biology of Reproduction, 71, 1195-1201. 10.1095/biolreprod.104.031054
Ginther, O. J., E. L. Gastal, M. O. Gastal y M. A. Beg. (2008). Dynamics of the equine preovulatory follicle and periovulatory hormones: what's new? Journal Equine Veterinary Science, 28(8), 454-460. https://doi.org/10.1016/j.jevs.2008.07.008.
Grimmett, J. B. y N. R. Perkins. (2001). Human chorionic gonadotropin (hCG): the effect of dose on ovulation and pregnancy rate in Thoroughbred mares experiencing their first ovulation of the breeding season. New Zealand Veterinary Journal, 49, 88-93. 10.1080/00480169.2001.36209.
Huff, N. K., D. L. Thompson Jr, L. R. Gentry y C. G. Depew. (2008). Hyperleptinemia in mares: prevalence in lactating mares and effect on rebreeding success. Journal Equine Veterinary Science, 28, 579-586. https://doi.org/10.1016/j.jevs.2008.08.008.
Iacono, E., B. Merlo, G. Rizzato, B. Mislei, N. Govoni, C. Tamanini y G. Mari. (2014). Effects of repeated transvaginal ultrasound–guided aspirations performed in anestrous and cyclic mares on P4 and E2 plasma levels and luteal function. Theriogenology, 82, 225-231. https://doi.org/10.1016/j.theriogenology.2014.03.025
Ishak, G. (2019). In vivo antral follicle wall biopsy: a new research technique to study ovarian function using the horse as a model. Ph. D. thesis, Southern Illinois University Carbondale, USA).
Katila, T., T. Reilas, K. Nivola, T. Peltonen y A. M. Virtala. (2010). A 15-year survey of reproductive efficiency of Standardbred and Finnhorse trotters in Finland-descriptive results. Acta Veterinaria Scandinavica, 52, 40. 10.1080/00480169.2001.36209.
Lemes, K. M., L. A. Silva, M. A. Alonso, E. C. C. Celeghini, G. Pugliesi, H. F. Carvalho, F. J. Affonso, D. F. Silva, T. G. Leite y R. P. de Arruda. (2017). Follicular dynamics, ovarian vascularity, and luteal development in mares with early or late postpartum ovulation. Theriogenology, 96, 23-30. 10.1016/j.theriogenology.2017.03.020.
Loomis, P. R. y E. L. Squires. (2005). Frozen semen management in equine breeding programs. Theriogenology, 64(3), 480-491. 10.1016/j.theriogenology.2005.05.028
Morris, L. H. A. y W. R. Allen. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Veterinary Journal, 34, 51-60. https://doi.org/10.2746/042516402776181222
Nath, L. C., G. A. Anderson y A. O. McKinnon. (2010). Reproductive efficiency of Thoroughbred and Standardbred horses in north‐east Victoria. Australian Veterinary Journal, 88, 169-175. https://doi.org/10.1111/j.1751-0813.2010.00565.x
Palmer, E. y M. A. Driancourt. (1980). Use of ultrasonic echography in equine gynecology. Theriogenology, 13, 203-216. https://doi.org/10.1016/0093-691X(80)90082-5.
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Disponible en: https://www.R- project.org/. Consultado en November de 2019.
Rodríguez G., A., A. Bazán G., J. Rodríguez G., J. Espinoza B., M. Vásquez C., J. Lucas L., y W. Huanca L. (2013). Evaluación del folículo ovárico de yeguas criollas post-administración de hCG. Revista Investigación Veterinaria, 24(2), 189-193.
SMN. (2018). Normales climatológicas. Servicio Meteorológico Nacional. Consultado en http://smn.cna.gob.m x/es/informacion-climatologica-ver-estado?estado=df

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia