Abstract
Introduction: Colon cancer diagnosis is usually performed late; so, it is necessary to search for prevention options. In vivo models are an option for the evaluation of chemopreventive agents, which are based mainly on the induction and promotion of carcinogenesis; however, they take a long time. This work aimed to evaluate and propose a carcinogenesis model, with tumor manifestation in a short time to prove the efficacy of chemopreventive compounds.
Method: Colon carcinogenesis was induced in three groups (n = 7) male BALB/c mice with azoxymethane (AOM) and dextran sodium sulfate (DSS). The damage was assessed 14 weeks after the induction. Protocols were: 1) P1: two AOM injections and two DSS cycles at 1.5 % for five days, with three resting days between cycles; 2) P2: one AOM injection and two DSS cycles at 2 % for seven days with five rest days, and 3) P3: one AOM injection and two DSS cycles at 2 % for four days, with four resting days. Negative control was used in parallel, P0: with one injection of saline solution and water ad libitum. Weight, disease activity index (DAI), survival, tumor incidence, lipids, and protein oxidation were determined.
Results: P2 showed greater severity in the assessed signs (100 % tumor incidence, colon weight/length ratio 101.68 ± 2.99 mg/cm), with low survival (43 %). P1 depicted lower mortality (14 %) and 83 % tumor incidence, without a significant difference to P2. P3 developed the disease but to a lesser degree (33 % tumor incidence). Furthermore, the three protocols showed lipid oxidation (0.4-0.58 ng/μg of protein) and proteins oxidation (0.6-1 ng/μg of protein). The P1 and P3 induction protocols presented less mortality, weight loss, and acceptable DAI, a weight/length ratio higher than the negative control and presence of tumors.
Discussion: The use of AOM (10mg/kg) combined with DSS (1.5-2 %) are suitable models to evaluate the carcinogenic effect of compounds of interest, inflammation signs, lipids and proteins oxidation and a survival number adequate to perform the statistical analysis leading to accurate conclusions. Therefore, P1 and P3 are protocols that can be used in chemoprevention assays with satisfactory results.
References
An, J., Li, X.-N., Zhao, B.-C., Wang, Q., Lan, Y., & Wu, Q. (2014). Chemo-preventive effect of Angelica sinensis' supercritical extracts on AOM/DSS-induced mouse colorectal carcinoma associated with inflammation. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 39(7), 1265-1269.
Betteridge, D. J. (2000). What is oxidative stress? Metabolism, 49(2, Supplement 1), 3-8. https://doi.org/10.1016/S0026-0495(00)80077-3
Bonetto, A., Rupert, J. E., Barreto, R., & Zimmers, T. A. (2016). The colon-26 carcinoma tumor-bearing mouse as a model for the study of cancer cachexia. J Vis Exp(117), e54893. https://doi.org/10.3791/54893
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin, 68(6), 394-424. https://doi.org/10.3322/caac.21492
Byun, S.-Y., Kim, D.-B., & Kim, E. (2015). Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis. Nutr Res, 35(8), 726-735. https://doi.org/10.1016/j.nutres.2015.05.016
Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Curr Protoc Immunol, 104(1), 15.25. 11-15.25. 14. https://doi.org/10.1002/0471142735.im1525s104
Cheng, K., Metry, M., Felton, J., Shang, A. C., Drachenberg, C. B., Xu, S., Zhan, M., Schumacher, J., Guo, G. L., & Polli, J. E. (2018). Diminished gallbladder filling increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15-deficient mice. Oncotarget, 9(39), 25572. https://doi.org/10.18632/oncotarget.25385
Chhabra, G., Singh, C. K., Ndiaye, M. A., Fedorowicz, S., Molot, A., & Ahmad, N. (2018). Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett, 422, 9-18. https://doi.org/10.1016/j.canlet.2018.02.
Costea, T., Hudiță, A., Ciolac, O.-A., Gălățeanu, B., Ginghină, O., Costache, M., Ganea, C., & Mocanu, M.-M. (2018). Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci, 19(12), 3787. https://doi.org/10.3390/ijms19123787
Cuéllar-Núñez, M. L., Luzardo-Ocampo, I., Campos-Vega, R., Gallegos-Corona, M. A., González de Mejía, E., & Loarca-Piña, G. (2018). Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res Int, 105, 159-168. https://doi.org/10.1016/j.foodres.2017.11.004
Daniluk, J., Daniluk, U., Reszec, J., Rusak, M., Dabrowska, M., & Dabrowski, A. (2017). Protective effect of cigarette smoke on the course of dextran sulfate sodium-induced colitis is accompanied by lymphocyte subpopulation changes in the blood and colon. Int J Colorectal Dis, 32(11), 1551-1559. https://doi.org/10.1007/s00384-017-2882-9
Davies, M. J. (2016). Protein oxidation and peroxidation. Biochem J, 473(7), 805-825. https://doi.org/10.1042/BJ20151227
Dienstmann, R., Salazar, R., & Tabernero, J. (2015). Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J Clin Oncol, 33(16), 1787-1796. https://doi.org/10.1200/JCO.2014.60.0213
Elimrani, I., Koenekoop, J., Dionne, S., Marcil, V., Delvin, E., Levy, E., & Seidman, E. G. (2017). Vitamin D reduces colitis-and inflammation-associated colorectal cancer in mice independent of NOD2. Nutr Cancer, 69(2), 276-288. https://doi.org/10.1080/01635581.2017.1263346
Elson, C. O., Sartor, R. B., Tennyson, G. S., & Riddell, R. H. (1995). Experimental models of inflammatory bowel disease. Gastroenterology, 109(4), 1344-1367. https://doi.org/10.1016/0016-5085(95)90599-5
Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., Davis, M., Muscaritoli, M., Ottery, F., Radbruch, L., Ravasco, P., Walsh, D., Wilcock, A., Kaasa, S., & Baracos, V. E. (2011). Definition and classification of cancer cachexia: an international consensus. The Lancet Oncology, 12(5), 489-495. https://doi.org/10.1016/S1470-2045(10)70218-7
Hammond, W. A., Swaika, A., & Mody, K. (2016). Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol, 8(1), 57-84. https://doi.org/10.1177/1758834015614530
Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. J Biol Chem, 294(51), 19683-19708. https://doi.org/10.1074/jbc.REV119.006217
Hecker, M., & Wagner, A. H. (2018). Role of protein carbonylation in diabetes. J Inherit Metab Dis, 41(1), 29-38. https://doi.org/10.1007/s10545-017-0104-9
Jeon, H.-J., Yeom, Y., Kim, Y.-S., Kim, E., Shin, J.-H., Seok, P. R., Woo, M. J., & Kim, Y. (2018). Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice. Nutr Res Pract, 12(2), 101-109. https://doi.org/10.4162/nrp.2018.12.2.101
Ju, J., Lee, G.-Y., Kim, Y.-S., Chang, H. K., Do, M.-S., & Park, K.-Y. (2016). Bamboo salt suppresses colon carcinogenesis in C57BL/6 mice with chemically induced colitis. J Med Food, 19(11), 1015-1022. https://doi.org/10.1089/jmf.2016.3798
Lin, R., Piao, M., Song, Y., & Liu, C. (2020). Quercetin Suppresses AOM/DSS-Induced Colon Carcinogenesis through Its Anti-Inflammation Effects in Mice. J Immunol Res, 2020. https://doi.org/10.1155/2020/9242601
Mishra, J., Drummond, J., Quazi, S. H., Karanki, S. S., Shaw, J. J., Chen, B., & Kumar, N. (2013). Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hemat, 86(3), 232-250. https://doi.org/10.1016/j.critrevonc.2012.09.014
Neufert, C., Becker, C., & Neurath, M. F. (2007). An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc, 2(8), 1998. https://doi.org/10.1038/nprot.2007.279
NCI, N. C. I. (2021). NCI dictionaries: tumor definition. NIH, (National Institutes of Health). Retrieved March 26 from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor
NOM-062-ZOO-1999. (1999). Norma Oficial Mexicana 062-ZOO-1999: Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. SAGARPA, (Secretaría de Agricultura, Ganadería, Desarrollo rural, Pesca y Alimentación). Retrieved March 26, 2021 from: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf
Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., & Nakaya, R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98(3), 694-702. https://doi.org/10.1016/0016-5085(90)90290-H
Oliveira, L. G., Cunha, A. L., Duarte, A. C., Castañon, M. C., Chebli, J. M., & Aguiar, J. A. (2014). Positive correlation between disease activity index and matrix metalloproteinases activity in a rat model of colitis. Arq Gastroenterol, 51(2), 107-112.
https://doi.org/10.1590/s0004-28032014000200007
Orangio, G. R. (2018). The economics of colon cancer. Surg Oncol Clin N Am, 27(2), 327-347. https://doi.org/10.1016/j.soc.2017.11.007
Park, Y. H., Kim, N., Shim, Y. K., Choi, Y. J., Nam, R. H., Choi, Y. J., Ham, M. H., Suh, J. H., Lee, S. M., Lee, C. M., Yoon, H., Lee, H. S., & Lee, D. H. (2015). Adequate Dextran Sodium Sulfate-induced Colitis Model in Mice and Effective Outcome Measurement Method. J Cancer Prev, 20(4), 260-267. https://doi.org/10.15430/JCP.2015.20.4.260
Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett, 387, 95-105. https://doi.org/10.1016/j.canlet.2016.03.042
Ramana, K. V., Srivastava, S., & Singhal, S. S. (2017). Lipid Peroxidation Products in Human Health and Disease 2016. Oxid Med Cell Longev, 2017, 2163285-2163285. https://doi.org/10.1155/2017/2163285
Ricciardiello, L., Ahnen, D. J., & Lynch, P. M. (2016). Chemoprevention of hereditary colon cancers: time for new strategies. Nat Rev Gastroenterol Hepatol, 13(6), 352. https://doi.org/10.1038/nrgastro.2016.56
Rowles, J. L., & Erdman, J. W. (2020). Carotenoids and their role in cancer prevention. Biochim Biophys Acta, 158613. https://doi.org/10.1016/j.bbalip.2020.158613
Sakita, J. Y., Gasparotto, B., Garcia, S. B., Uyemura, S. A., & Kannen, V. (2017). A critical discussion on diet, genomic mutations, and repair mechanisms in colon carcinogenesis. Toxicol Lett, 265, 106-116. doi: 10.1016/j.toxlet.2016.11.020.
Sánchez-Chino, X. M., Jiménez-Martínez, C., Vásquez-Garzón, V. R., Álvarez-González, I., Villa-Treviño, S., Madrigal-Bujaidar, E., Dávila-Ortiz, G., & Baltiérrez-Hoyos, R. (2017). Cooked chickpea consumption inhibits colon carcinogenesis in mice induced with azoxymethane and dextran sulfate sodium. J Am Coll Nutr, 36(5), 391-398. https://doi.org/10.1080/07315724.2017.1297744
Sasaki, M., Bharwani, S., Jordan, P., Elrod, J. W., Grisham, M. B., Jackson, T. H., Lefer, D. J., & Alexander, J. S. (2003). Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radical Bio Med, 35(12), 1679-1687. https://doi.org/10.1016/j.toxlet.2016.11.020
Shi, N., Clinton, S. K., Liu, Z., Wang, Y., Riedl, K. M., Schwartz, S. J., Zhang, X., Pan, Z., & Chen, T. (2015). Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice. Nutrients, 7(3), 1696-1715. https://doi.org/10.3390/nu7031696
Shichiri, M. (2014). The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr, 14-10.
Stadtman, E. R. (2001). Protein oxidation in aging and age‐related diseases. Annals of the New York Academy of Sciences, 928(1), 22-38. https://doi.org/10.1111/j.1749-6632.2001.tb05632.x
Suzuki, R., Kohno, H., Sugie, S., Nakagama, H., & Tanaka, T. (2006). Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis, 27(1), 162-169. https://doi.org/10.1093/carcin/bgi205
Sydora, B. C., Albert, E. J., Foshaug, R. R., Doyle, J. S., Churchill, T. A., & Fedorak, R. N. (2012). Intravenous injection of endogenous microbial components abrogates DSS-induced colitis. Dig Dis Sci, 57(2), 345-354. https://doi.org/10.1007/s10620-011-1878-5
Tan, B. H. L., & Fearon, K. C. H. (2008). Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care, 11(4), 400-407. https://doi.org/10.1097/MCO.0b013e328300ecc1.
Tanaka, T., Kohno, H., Suzuki, R., Yamada, Y., Sugie, S., & Mori, H. (2003). A novel inflammation‐related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer science, 94(11), 965-973. https://doi.org/10.1111/j.1349-7006.2003.tb01386.x
Thaker, A. I., Shaker, A., Rao, M. S., & Ciorba, M. A. (2012). Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS). JoVE (Journal of Visualized Experiments)(67), e4100. https://doi.org/10.3791/4100
Venning, F. A., Claesson, M. H., & Kissow, H. (2013). The carcinogenic agent azoxymethane (AOM) enhances early inflammation-induced colon crypt pathology. J Cancer Sci Ther, 5(11), 377-383. https://doi.org/1978-5956.1000229
Wu, C. (2018). Systemic therapy for colon cancer. Surg Oncol Clin N Am, 27(2), 235-242. https://doi.org/10.1016/j.soc.2017.11.001
Zhang, Y.-S., Wang, F., Cui, S.-X., & Qu, X.-J. (2018). Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice. Cancer Biol Ther, 19(8), 735-744. https://doi.org/10.1080/15384047.2018.1453971

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Nova Scientia