Monitoring the voltage of a solar panel and light quality using the Internet of Things
PDF (Español (España))
XML (Español (España))

Keywords

Arduino
Cayenne
Energía solar
Efecto fotovoltaico
ESP8266
Intensidad luminosa
NodeMCU
internet de las cosas
celdas solares
eficiencia de conversión energética
efecto fotovoltaico
energías limpias
dispositivos electrónicos Arduino
Cayenne
solar energy
photovoltaic effect
ESP8266
light intensity
NodeMCU
Internet of Things
solar cells
energy conversion
clean energies
electronics devices

How to Cite

Cruz Vázquez, J. K., Velasco Pineda, M., & Ruiz Ruiz, F. G. (2021). Monitoring the voltage of a solar panel and light quality using the Internet of Things. Nova Scientia, 13(26). https://doi.org/10.21640/ns.v13i26.2684

Abstract

Solar energy technology, a natural and free energy source, is implemented in places with limited access to traditional electric power, in some cases in the agricultural field or small rural human settlements. Currently, commercial systems include a charge control unit with a small display, to show the voltage generated, but unfortunately, the operator must go to the controller to check its performance, so it is necessary to have a tool that allows knowing the energy conversion in real-time remotely. This can be achieved by making use of the Internet of Things (IoT) technology. Currently, there are several IoT platforms; some are free, others are demo or paid versions.

Method: In this work, a prototype was developed with a system for monitoring the voltage and light intensity of a small solar cell and a TSL2561 digital sensor. The Arduino programming environment coupled to a myDevices Cayenne (IoT) platform was used to transmit and access the data remotely.

Results: With the integration of the components, the myDevices Cayenne platform was able to monitor in real-time the voltage of the solar cell and the luminous intensity of the environment visually and intuitively, from any computer or cell phone with internet access.

Discussion: The myDevices Cayenne IoT platform has become an attractive, accessible, robust, and easy-to-use option for the development of innovative IoT projects applied to different sectors of economic importance.

https://doi.org/10.21640/ns.v13i26.2684
PDF (Español (España))
XML (Español (España))

References

Alemán, G., Casiano, V., Cárdenas, D., Díaz, R., Scarlat, N., Mahlknecht, J., ... & Parra, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140-153. https://doi.org/10.1016/j.rser.2014.01.004

Ali, M., & Paracha, M. (2020). An IoT based approach for monitoring solar power consumption with Adafruit Cloud. International Journal of Engineering Applied Sciences and Technology, 4(9), 335-341. https://doi.org/10.33564/IJEAST.2020.v04i09.042

Arduino (2019). Arduino Software (IDE). Recuperado el 15 de noviembre 2019 de página principal de Arduino: https://www.arduino.cc/en/Main/Software

Bonilla I., Tavizon, A., Morales, M., Guajardo, L., & Laines, C. (2016). IoT, el internet de las cosas y la innovación de sus aplicaciones. Vinculatégica efan, (1), 2313-2340. Disponible en http://www.track2iot.com/documentos/iot_el_internet_de_las_cosas.pdf

Buitrago, R. (2005). La Energía del Sol. ConCiencia, 1(14), 8-9. https://doi.org/10.14409/cc.v1i14.2184

Cayenne (2019). Login - Cayenne. myDevices Cayenne. Recuperado 1 de julio de 2019, de https://cayenne.mydevices.com/cayenne/forum_login

Ceja, J., Rentería, R., Ruelas, R., & Ochoa, G. (2017). Módulo ESP8266 y sus aplicaciones en el internet de las cosas. Revista de Ingeniería Eléctrica, 1(2), 24-36. Disponible en https://docplayer.es/85109596-Modulo-esp8266-y-sus-aplicaciones-en-el-internet-de-las-cosas.html

Dumitru, R. (2017). IoT Platforms: Analysis for Building Projects. Informática Económica, 21(2), 44-53. https://doi.org/10.12948/issn14531305/21.2.2017.04

Duque, S. (2017). Monitoreo y control de variables ambientales mediante una red inalámbrica para agricultura de precisión en invernaderos. Revista Vector, 51-60. Disponible en: http://vector.ucaldas.edu.co/downloads/Vector12_6.pdf

Espressif (2016). Manual Low Power Solutions ESP8266 V1.1. Disponible en: https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf

Fernández, M., Moreno, F., Escobedo, P., García, P., Capitán, L., & Martínez, A. (2020). Optical portable instrument for the determination of CO2 in indoor environments. Talanta, 208, 120387. https://doi.org/10.1016/j.talanta.2019.120387

Fritzing (versión 0.9.4) [software]. (2019). Interaction Design Lab. Disponible https://fritzing.org/

Gómez, J., Castaño, S., Mercado, T., Fernández, A., & García, J. (2017). Sistema de Internet de las cosas (IoT) para el monitoreo de cultivos protegidos. Ingeniería e Innovación, 5(1), 24-31. https://doi.org/10.21897/23460466.1101

Green, M. (2009). The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17(3), 183-189. https://doi.org/10.1002/pip.892

Gutiérrez, E., & Rivera, L. (2013). Fuente alterna de energía renovable: Celdas solares orgánicas. Entre ciencias: diálogos en la sociedad del conocimiento, 1(1), 19-29. https://doi.org/10.21933/j.edsc.2013.001.006

Hejazi, H., Rajab, H., Cinkler, T., & Lengyel, L. (2018). Survey of platforms for massive IoT. In 2018 IEEE International Conference on Future IoT Technologies (Future IoT) (pp. 1-8). IEEE.

Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing: a tool for advancing electronic prototyping for designers. Tangible and Embedded Interaction. https://dl.acm.org/doi/10.1145/1517664.1517735

Kodali, R., & John, J. (2020). Smart monitoring of solar panels using AWS. In 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (pp. 422-427). IEEE. https://doi/10.1109/PARC49193.2020.236645

Lamigueiro, O. (2013). Energía solar fotovoltaica. Creative Commons ebook. España. 192pp.

López, J., López, F., & García, A. (2018). Aplicación del Internet de las Cosas en la salud: caso en la Enfermedad Pulmonar Obstructiva Crónica. Ciencia y poder aéreo, 13(1), 82-92. https://doi.org/10.18667/cienciaypoderaereo.589

Muñoz, A., & Guryev, I. (2017). Desarrollo del sistema de control autónomo de la iluminación para domótica. Jóvenes en la Ciencia, 2(1), 1033-1036. http://148.214.90.90/index.php/jovenesenlaciencia/article/view/1151

myDevices (2019). Cayenne Features. Developer | myDevices.com. Recuperado 12 de julio de 2019 de página oficial de Cayenne. Disponible en: https://developers.mydevices.com/cayenne/features/

Nakhuva, B., & Champaneria, T. (2015). Study of various internet of things platforms. International Journal of Computer Science & Engineering Survey, 6(6), 61-74.

Nevárez, M., Mecía, W., & Yánez, V. (2019). Sistema de monitoreo delincuencial en viviendas basado en Internet de las Cosas. 3C Tecnología_Glosas de Innovación Aplicadas a La Pyme, 8(3), 24-43. https://doi.org/10.17993/3ctecno/2019.v8n3e31.24-43

Rodríguez, J., Espinoza, E., Rosenbuch, J., Ortega, H., Martínez, M., Cedano, K., & Armenta, M. (2017). La Industria Solar Fotovoltaica y Fototérmica en México. Ciudad de México. ProMéxico. 172pp. Disponible en: https://www.gob.mx/cms/uploads/attachment/file/428621/La_industria_solar_fv_y_ft_en_M_xico-compressed.pdf

Rodríguez, S., López, L., Vega, B., & Flórez, H. (2017). Sistema de monitoreo y control remoto usando IoT para un regulador de presión. Scientia Et Technica, 22(4), 391-397. https://doi.org/10.22517/23447214.13291

Saravanan, D., & Lingeshwaran, T. (2019). Monitoring of solar panel based on IoT. IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1-5. https://doi.org/10.1109/ICSCAN.2019.8878814

Singh N., Kumar S., Kanaujia B., Choi H., & Kim K. (2019) Energy-Efficient System Design for Internet of Things (IoT) Devices. In: Mittal M., Tanwar S., Agarwal B., Goyal L. (eds) Energy Conservation for IoT Devices. Studies in Systems, Decision and Control, vol 206. Springer, Singapore

Spanias, A. (2017). Solar energy management as an Internet of Things (IoT) application. In 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-4). IEEE. https://doi/10.1109/IISA.2017.8316460.

Sparkfun (2018). SparkFun Luminosity Sensor Breakout - TSL2561. SEN-12055 - SparkFun Electronics. Disponible en: https://www.sparkfun.com/products/retired/12055

Wortmann, F., & Flüchter, K. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221-224. https://doi.org/10.1007/s12599-015-0383-3

Zárate, G., Ramos, M., Contreras, L., Bélen, J., & González, C. (2018). Diseño y construcción de un prototipo biomédico para la adquisición vía remota de signos vitales utilizando tecnologías del internet de las cosas (IoT). In Memorias del Congreso Nacional de Ingeniería Biomédica, 5(1), 470-473. Disponible en: http://memorias.somib.org.mx/index.php/memorias/article/view/564/397

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nova Scientia