Effect of protein concentrations in the diet on productive performance, carcass characteristics, and meat chemical composition of broiler chickens in the dry subtropics


soybean meal
productive efficiency
food consumption
productive performance
dry matter
ether extract
subtropical area of Mexico
chemical composition alimento
harina de soya
eficiencia productiva
consumo de alimento
comportamiento productivo
materia seca
extracto etéreo
zona subtropical de México
composición química

How to Cite

Infante-Rodríguez, F., Domínguez-Muñoz, M. Ángel, Montaño-Gómez, M. F., Hume, M. E., Anderson, R. C., Manríquez-Núñez, O. M., López-Acevedo, E. A., Bautista-Martínez, Y., & Salinas-Chavira, J. (2020). Effect of protein concentrations in the diet on productive performance, carcass characteristics, and meat chemical composition of broiler chickens in the dry subtropics. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2585


Introduction: Current diets of broiler chickens tend to increase protein levels to obtain high productive variables that are achieved in combination with genetic, management, and sanitary improvements, among others. An increase in dietary crude protein levels does not always accompany an increase in broiler productive efficiency due to multiple factors involved in the production system. The objective of this study was to evaluate the effect of increasing levels of dietary crude protein (CP) on productive performance, carcass characteristics, and chemical composition of breast and thigh meat in broiler chickens raised in the dry subtropics of northeastern Mexico.

Method: The study used 200, 1-day-old male Ross broiler chicks. In a completely randomized design, birds were allocated to the four treatments with five replicates (floor pens) of ten birds each. The trial was divided in two phases (starter and finisher) of 21 days each (42 days total). Treatment diets (T) for starter and finisher phases had crude protein concentrations (CP; %) of 21 and 18.1 (T1), 21.4 and 18.5 (T2), 21.8 and 18.9 (T3), and 22.2 and 19.3 (T4), respectively. Within each feeding phase, the four treatment diets were formulated to similar levels of apparent metabolizable energy.

Results: Protein concentrations had no effect (P > 0.05) on weight gain, while feed intake was greater in T1 (P < 0.05) than in T2 and T3. Feed conversion was better in T2 and T4 (P < 0.05) than in T1. There was no influence of treatment on carcass weight or carcass cuts (P > 0.05). Carcass yield was greater in T1 than in T3 (P < 0.05). Breast and thigh dry matter and ether extracts were similar (P > 0.05) between treatments. Breast crude protein was greater (P < 0.05) in T2 than in T3. The lowest (P < 0.05) CP concentration in thigh meat was in T3.

Discussion or Conclusion: These results indicated that in the dry subtropics area of northeastern Mexico increases in CP above the level of T2 (21.4% and 18.5% CP in starter and finisher diets, respectively) did not improve broiler chicken productive performance, carcass characteristics or meat chemical composition.



AOAC. (1990). Official methods of analysis, 15th ed. Association of Official Analytical Chemists, Arlington

Abdel-Maksoud, A., Yan, F., Cerrate, S., Coto, C., Wang, Z., & Waldroup, P. W. (2010). Effect of dietary crude protein, lysine level and amino acid balance on performance of broilers 0 to 18 days of age. International Journal of Poultry Science, 9(1), 21-27. DOI: 10.3923/ijps.2010.21.27

Aftab, U. (2019). Energy and amino acid requirements of broiler chickens: keeping pace with the genetic progress. World's Poultry Science Journal, 75(4), 507-514. DOI: https://doi.org/10.1017/S0043933919000564

Amiri, M., Ghasemi, H. A., Hajkhodadadi, I., & Farahani, A. H. K. (2019). Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress. Animal Feed Science and Technology, 254,114208. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114208

Applegate, T. J., & Angel, R. (2014). Nutrient requirements of poultry publication: History and need for an update. Journal of Applied Poultry Research, 23(3), 567-575. DOI: https://doi.org/10.3382/japr.2014-00980

Awad, E. A., Zulkifli, I., Farjam, A. S., & Chwen, L. T. (2014). Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids. Italian Journal of Animal Science, 13(2), 270-274. DOI: 10.4081/ijas.2014.3166

Bernal, L. E. P., Tavernari, F. C., Rostagno, H. S., & Albino, L. F. T. (2014). Digestible lysine requirements of broilers. Brazilian Journal of Poultry Science, 16(1), 49-55. DOI: http://dx.doi.org/10.1590/S1516-635X2014000100007.

Boonsinchai, N., Potchanakorn, M., & Kijparkorn, S. (2016). Effects of protein reduction and substitution of cassava for corn in broiler diets on growth performance, ileal protein digestibility and nitrogen excretion in feces. Animal Feed Science and Technology, 216, 185-196. DOI:https://doi.org/10.1016/j.anifeedsci.2016.03.022

Dehghani-Tafti, N., & Jahanian, R. (2016). Effect of supplemental organic acids on performance, carcass characteristics, and serum biochemical metabolites in broilers fed diets containing different crude protein levels. Animal Feed Science and Technology, 211, 109-116. https://doi.org/10.1016/j.anifeedsci.2015.09.019

Dozier III, W. A., Kidd, M. T., & Corzo A. 2008. Dietary amino acid responses of broiler chickens. Journal of Applied Poultry Research, 17(1), 157-167. DOI: https://doi.org/10.3382/japr.2007-00071

Faridi, A., Golian, A., &Ahmadi, H. (2012). Comparison of responses to dietary protein and lysine in broiler chicks reared before and after 2000 via neural network models. The Journal of Agricultural Science, 150(6), 775-786. DOI: https://doi.org/10.1017/S0021859612000305

Faridi, A., Gitoee, A., & France J. (2015). Evaluation of the effects of crude protein and lysine on the growth performance of two commercial strains of broilers using meta-analysis. Livestock Science, 181, 77–84. DOI: https://doi.org/10.1016/j.livsci.2015.10.010

Ghazanfari, S., Tahmoorespur, M., & Nobari, K. (2010). Changes in ghrelin mRNA level, plasma growth hormone concentration and performance in different dietary energy and protein levels in broiler chicken. Italian Journal of Animal Science, 9(e56), 290-295. DOI: https://doi.org/10.4081/ijas.2010.e56

Gheorghe, A., Dragotoiu, D., Ciurescu, G., Lefter, N., & Hăbeanu, M. (2013a). Effects of dietary protein level on protein deposition in broilers: 2. Body composition, plasma metabolic profile and litter composition. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 70(2), 274-283. DOI: http://dx.doi.org/10.15835/buasvmcn-asb:70:2:9303

Gheorghe, A., Dragotoiu, D., Ciurescu, G., Lefter, N., & Hăbeanu, M. (2013b). Effects of dietary protein level on protein deposition in broilers: 1. Productive performance and carcass characteristics. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies. 70(2), 266-273. DOI: http://dx.doi.org/10.15835/buasvmcn-asb:70:2:9253

Gómez, R. S., Cortés Cuevas, A., López Coello, C., & Ávila González, E. (2011). Evaluación de tres programas de alimentación para pollos de engorda con base en dietas sorgo-soya con distintos porcentajes de proteína. Veterinaria México, 42(4), 299-309. http://www.scielo.org.mx/pdf/vetmex/v42n4/v42n4a5.pdf

Goulart, C.C., Costa, F.G.P., Silva, J.H.V., Souza, J.G., Rodrigues, V.P., & Oliveira, C.F.S. (2011). Requirements of digestible methionine + cystine for broiler chickens at 1 to 42 days of age. Revista Brasileira de Zootecnia, 40(4), 797-803. DOI: https://doi.org/10.1590/S1516-35982011000400013

Hada, F. H., Malheiros, R. D., Silva, J. D. T., Marques, R. H., Gravena, R. A., Silva, V. K., & Moraes, V. M. B. (2013). Effect of protein, carbohydrate, lipid, and selenium levels on the performance, carcass yield, and blood changes in broilers. Brazilian Journal of Poultry Science, 15(4), 385-394. DOI: http://dx.doi.org/10.1590/S1516-635X2013000400014

Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M. H., & Kamyab, A. (2012). Effects of non-antibiotic feed additives on performance, immunity and intestinal morphology of broilers fed different levels of protein. South African Journal of Animal Science, 42(1), 23-32. DOI: http://dx.doi.org/10.4314/sajas.v42i1.3

Jafarnejad, S., Farkhoy, M., Sadegh, M., & Bahonar, A. R. (2010). Effect of crumble-pellet and mash diets with different levels of dietary protein and energy on the performance of broilers at the end of the third week. Veterinary Medicine International, 2010: p1-5. DOI: https://doi.org/10.4061/2010/328123

INEGI. Instituto Nacional de Estadística, Geografía e Informática. (2017). Anuario Estadístico del Estado de Tamaulipas. Accessed 16 January 2020. http://www.datatur.sectur.gob.mx/itxef_docs/tams_anuario_pdf.pdf

Laudadio, V., Dambrosio, A., Normanno, G., Khan, R. U., Naz, S., Rowghani, E., & Tufarelli, V. (2012a). Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biology Research, 5(2), 88-92. DOI:https://doi.org/10.3184/175815512X13350180713553

Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R. U., & Tufarelli, V. (2012b). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1), 265-270. DOI: 10.3382/ps.2011-01675.

Liu, G., Magnuson, A. D., Sun, T., Tolba, S. A., Starkey, C., Whelan, R., & Lei, X. G. (2019). Supplemental methionine exerted chemical form-dependent effects on antioxidant status, inflammation-related gene expression, and fatty acid profiles of broiler chicks raised at high ambient temperature. Journal of animal science, 97(12), 4883–4894. DOI: https://doi.org/10.1093/jas/skz348

Mandal, A. B., Panda, A. K., Elangovan, A. V., Deo, C., & Shrivastav, H. P. (2010). Effect of different dietary protein levels supplemented with limiting amino acids on the performance of broilers in extreme summer. Indian Journal of Poultry Science, 45(3), 283-286. https://www.indianjournals.com/ijor.aspx?target=ijor:ijps&volume=45&issue=3&article=009

Marcu, A., Vacaru-Opriş, I., Marcu, A., Nicula, M., Dronca, D., & Kelciov, B. (2012). The Influence of Feed Energy and Protein Level on Meat Quality at „Hubbard F15“ Broiler Chickens. Animal Science and Biotechnologies, 45(2), 432-439. https://www.spasb.ro/index.php/spasb/article/view/422

Marcu, A., Vacaru-Opriş, I., Dumitrescu, G., Petculescu, C., Marcu, A., Petculescu-Ciochină, L., Nicula, M., Dronca, D., & Kelciov, B. (2013). Effect of Diets with Different Energy and Protein Levels on Breast Muscle Characteristics of Broiler Chickens. Animal Science and Biotechnologies, 46(1), 333-340. http://spasb.ro/index.php/spasb/article/view/229

Miranda, D. J. A., Vieira, S. L., Favero, A., Angel, C. R., Stefanello, C., & Nogueira, E. T. (2015). Performance and meat production of broiler chickens fed diets formulated at different crude protein levels supplemented or not with L-valine and L-isoleucine. Animal Feed Science and Technology, 206, 39-47. DOI: https://doi.org/10.1016/j.anifeedsci.2015.04.018

Nagata, A. K., Rodrigues, P. B., Alvarenga, R. R., Zangeronimo, M. G., Donato, D. C. Z., & Silva, J. H. V. D. (2011). Carcass characteristics of broilers at 42 days receiving diets with phytase in different energy and crude protein levels. Ciência e Agrotecnologia, 35(3), 575-581. DOI: https://doi.org/10.1590/S1413-70542011000300020.

National Research Council (NRC). 1994. Nutrient requirements of poultry, 9th ed. National Academy Press, Washington

Oliveira, W. P. D., Oliveira, R. F. M. D., Donzele, J. L., Oliveira Neto, A. R. D., Gomes, P. C., Maia, A. P. D. A., Campos, P. H. R. S., & Gasparino, E. (2013). Dietary crude protein reduction on growth and carcass performance of 22 to 42-day-old broilers reared under different temperatures. Revista Brasileira de Zootecnia, 42(8), 599-604. DOI: http://dx.doi.org/10.1590/S1516-35982013000800010

Quadros, T. O., Duarte, K. F., Sgavioli, S., Alva, J. C. R., Domingues, C. H., Santos, E. T., Castiblanco, D. M. C., Marques, R. H., Amoroso, L., & Junqueira, O. M. (2019). Digestible lysine supplementation influences weight gain in 21-day-old broiler chickens. Archivos de Zootecnia, 68(261), 120-126. DOI: https://doi.org/10.21071/az.v68i261.3947

SAS. (2002). SSAS/STAT User’s Guide (Release 9.2). Cary, NC: Author.

UNA. 2019. Unión Nacional de Avicultores. https://www.una.org.mx/indicadores-economicos/. Accessed on January of 2020.

Zarghi, H., Golian, A., & Nikbakhtzade, M. (2020). Effect of dietary digestible lysine level on growth performance, blood metabolites and meat quality of broilers 23–38 days of age. Journal of Animal Physiology and Animal Nutrition, 104(1), 156-165. DOI: https://doi.org/10.1111/jpn.13214

Zulkifli, I., Akmal, A. F., Soleimani, A. F., Hossain, M. A., & Awad, E. A. (2018). Effects of low-protein diets on acute phase proteins and heat shock protein 70 responses, and growth performance in broiler chickens under heat stress condition. Poultry Science, 97(4), 1306–1314. DOI: 10.3382/ps/pex436.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia