Indicator to assess the comfort attribute in public bus transport, for the Estimation of Discrete Choice Models
PDF (Español (España))
XML (Español (España))

Keywords

mode attribute
comfort
generalized cost
discrete choice models
public bus transport
mobility
car
probability
city
territory
transport
costs
users atributo del medio
comodidad
costo generalizado
modelos de elección discreta
transporte público
movilidad
automóvil
probabilidad
ciudad
territorio
transporte
costos
usuarios

How to Cite

Obregón Biosca, S. A. (2020). Indicator to assess the comfort attribute in public bus transport, for the Estimation of Discrete Choice Models. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2470

Abstract

Introduction: The perception of comfort in public bus transport is heterogeneous like the diversity of its users, and the choice of travel in such a mode of transport is a process that reflects different user attitudes, among which are its socioeconomic characteristics. Relating features of the user and their perceived level of comfort can be estimated by statistical and logistical methods in order to determine the probability of choosing the mode.

Method: Based on the origin-destination survey, applied in the urban area of Querétaro, and considering that the generalized cost of car travel is lower than that of public bus transport, this research shown a procedure to the estimation of attributes for both modes. For example, one side, a process for obtaining the attribute of comfort on public bus transport and on the other, a generalized cost index for the automobile.

Results: In the estimated models, the attribute of the transport modes, under the reported procedure, reflects a lower probability of choosing the private car if the public bus transport have a higher level of comfort. In addition, considering the intrinsic relationship in the car attribute, the more similar the generalized cost of public transportation and that of the automobile, closer to zero and the lower utility the car raises, thus ruling the attribute of comfort in the public bus transport.

Discussion or Conclusion: It is found that the perception of comfort on public bus transport is related to the choice of such modes. Regarding the car attribute, the indicator presented shows that the lower the generalized cost of car travel and the greater the cost of the bus, which generates a greater likelihood of choosing the first mode. The above, considered for cities such as that of the case study, in which the generalized cost of cars (regarding the above parameters) will be less than the generalized cost of public transportation, mainly due to total travel time.

https://doi.org/10.21640/ns.v12i25.2470
PDF (Español (España))
XML (Español (España))

References

Ampt, E. S., Ortúzar, J. de D. y Willumsen, L. G. (1998). Metropolitan origin-destination surveys: the state of the art. 8th World Conference on Transport Research, Antwerp, Julio de 1998, Bélgica.

Andaleeb, S.S., Haq, M. y Ahmed, R. I. (2007). Reforming Innercity Bus Transportation in a Developing Country: A Passenger-Driven Model. Journal of Public Transportation, 10, 1-25.

Andreassen, T.W. (1995). Customer (Dis) satisfaction with public service: The case of public transportation. Journal of services marketing, 9(5), 30-41.

Barabino, B. y Deiana, E. (2013). On the attributes and influencing factors of end-users quality perceptions in urban transport: An exploratory analysis. Procedia - Social and Behavioral Sciences, 87, 18-30. DOI: https://doi.org/10.1016/j.sbspro.2013.10.591

Batarce, M., Muñoz, J.C., Ortúzar, J.D., Raveau, S., Mojica, C. y Ríos, R.A. (2015). Evaluation of Passenger Comfort in Bus Rapid Transit Systems. Inter-American Development Bank, Infrastructure and Environment Sector, Transport Division, No. IDB-TN-770.

Cañadas, I. y Sánchez, A., (1998). Categorías de respuesta en escalas tipo Likert, Universidad de La Laguna. Psicothema, 10(3), 623-631.

Castellanos, J.C. y Fruett, F. (2013). Embedded system to evaluate the passenger comfort in public transportation based on dynamical vehicle behavior with user’s feedback. Measurement, 47, 442-451.

Disney, J. (1998). Competing through quality in transport services. Managing Service Quality, 8, 112-118.

Eboli, L. y Mazzulla, G. (2011). A methodology for evaluating transit service quality based on subjective and objective measures from the passenger’s point of view. Transport Policy, 18, 172-181.

Espino, R. (2003). Análisis y Predicción de la Demanda de Transporte de Pasajeros. Una Aplicación a Dos Corredores de Transporte en Gran Canarias. Doctoral dissertation, Universidad de Las Palmas de Gran Canaria, España.

Espino, R., Ortúzar, J.D. y Román, C. (2004). Diseño de preferencias declaradas para analizar la demanda de viajes. Estudios de Economía Aplicada, 22(3), 759-793.

Fellesson, M. y Friman, M. (2008). Perceived Satisfaction with Public Transport Service in Nine European Cities. Journal of the Transportation Research Forum, 47(3), 93-103.

Fischer, M. M. (1993). Travel demand (6-32). En J. Polak y A. Heertje (Eds.). European transport economics.

Foote, P.J. (2004). Making buses better in Chicago: strategic implementation of customer-derived performance measures from 1995–2001. Transportation Research Record: Journal of the Transportation Research Board, 1884, 18-26.

Fornell, C. (1992). A National Customer Satisfaction Barometer: The Swedish Experience. Journal of Marketing, 56(1), 6-21. DOI: 10.2307/1252129

George, T. K., Gadhia, H. M., Sukumar, R. S. y Cabibihan, J.-J. (2013). Sensing discomfort of standing passengers in public rail transportation systems using a smart phone. 10th IEEE International Conference on Control and Automation, 1509-1513.

Greene, W. H. (2010). Econometric Analysis. Pearson editor. ISBN-10: 0131395386.

Holmgren, J. (2007). Meta-analysis of public transport demand. Transportation Research Part A, 41, 1021-1035. DOI: https://doi.org/10.1016/j.tra.2007.06.003

Horn, R. (1993). Statistical indicators for the economic and social sciences. Cambridge, University Press, Hong Kong.

Ibeas, Á., González, F., Dell Olio, L. y Moura, J. (2007). Manual de encuestas de movilidad (preferencias reveladas). Santander, España: Editorial Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Santander.

İmre, S. y Çelebi, D., (2017). Measuring Comfort in Public Transport: A case study for İstanbul. Transportation Research Procedia, 25C, 2445–2453.

INEGI (2010). Censo de Población y Vivienda 2010. Principales resultados por AGEB y manzana urbana. Instituto Nacional de Estadística, Geografía e Informática. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/iter_ageb_manzana_2010.aspx. Mayo de 2018.

Iseki, H. y Taylor, B.D., (2008). Style versus service? An analysis of user perceptions of transit stops and stations. Journal of Public Transportation, 13(3), 23-48.

Lancaster, K.J. (1966): A new approach to consumer theory. Journal of Political Economy, 14, 132-157. DOI: https://www.jstor.org/stable/1828835

Li, Z. y Hensher, D.A., (2012). Congestion charging and car use are view of stated preference and opinion studies and market monitoring evidence. Transport Policy, 20, 47-61.

Lin, C.Y., Chen, L.J., Chen, Y.Y. y Lee, W.C., (2010). A comfort measuring system for public transportation systems using participatory pone sensing, In: Proceedings of Phone Sense. Zurich, Switzerland.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior (105-142). In Frontiers in Econometrics, Zarembka, P (Ed.) New York: Academic Press.

McFadden, D. L. (1997). The theory and practice of disaggregate demand forecasting for various modes of urban transportation, 1978 (51-79). In Hoon Oum, T. et al. (Eds.). Transport Economics: Selected readings.

Mondragón, A. (2002). ¿Qué son los indicadores? Revista de información y análisis, no. 19, INEGI. 52 – 58.

Moreno, E. (2011). Métodos de elección discreta en la estimación de la demanda de transporte. Instituto Mexicano del Transporte, Publicación Técnica No. 335, Sanfandila, Qro.

Nyongesa, D. y Bwisa, H. (2014). Service Quality and Customer Satisfaction in Public Transport Sector of Kenya: A survey of Shuttle Travelers in Kitale Terminus. International Journal of Academic Research in Business and Social Sciences, 4(9).

Obregón, S.A. y Betanzo, E. (2015). Análisis de la movilidad urbana de una ciudad media mexicana, caso de estudio: Santiago de Querétaro. Economía sociedad y territorio, 15(47), 61-98. DOI: https://doi.org/10.22136/est002015554.

Obregón, S.A., Romero, J.A. y Betanzo, E. (2015). La movilidad en una zona metropolitana mexicana, caso de estudio: Querétaro, México. Revista Transporte y Territorio, 12, 167-197.

Obregón, S.A., Romero, J.A., Mendoza, J.F. y Betanzo, E. (2016). Impact of Mobility Induced by Urban Sprawl: Case Study of the Querétaro Metropolitan Area. Journal of Urban Planning and Development DOI: 10.1061/(ASCE)UP.1943-5444.0000295.

Ortúzar, J.D. y Román, C. (2003). El problema de modelación de demanda desde una perspectiva desagregada: el caso del transporte. Eure, 29(88), 149-171. Pontificia Universidad Católica de Chile, Chile.

Ortúzar, J.D. y Willumsen, L.G. (2008). Modelos de Transporte. Universidad de Cantabria.

Redman, L., Friman, M., Gärling, T. y Hartig, T. (2013). Quality attributes of public transport that attract car users: A research review. Transport Policy, 25, 119-127.

Richardson, A.J., Ampt, E.S. y Meyburg, A.H. (1995). Survey Methods for Transport Planning. 75-145.

Saaty, T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

Smith, M. E. (1979). Design of small sample home interview travel surveys. Transportation Research Record, 701, 29-35

Stopka, O., Simková, I., Konecný, V. (2015). The Quality of Service in the Public Transport and Shipping Industry. International Journal of Maritime Science and Technology, 62, (3).

Strandemar, K. (2005). On Objective Measures for Ride Comfort Evaluation, Department of Signals, Sensors and Systems. Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden.

Tennøy, A. (2010). Why we fail to reduce urban road traffic volumes: does it matter how planners frame the problem. Transport Policy, 17, 216-223.

Torres G., Hernández S. y Ruvalcaba, J. I. (2012). Actualización de la metodología para estimar el valor del tiempo de los usuarios de la red carretera nacional. Publicación Técnica No. 381, Sanfandila, Qro.

Tyrinopoulos, Y. y Antonious, C. (2008). Public transit user satisfaction: Variability and policy implications. Transport Policy, 15, 260-272.

Wall, G. y McDonald, M. (2007). Improving bus service quality and information in Winchester. Transport Policy, 14, 165-179. DOI: https://doi.org/10.1016/j.tranpol.2006.12.001

Zatti, A. (2012). New organizational models in European local public transport: from myth to reality. Annals of Public and Cooperative Economics, 83(4), 553-559.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia