Microbially-mediated de-watering and consolidation (“Biodensification”) of oil sands mature fine tailings, amended with agri-business by-products
PDF
XML

Keywords

biodensification
oil sands tailings
anaerobic biodegradation
methanogens

petroleum
colloidal solids
methane
bioethanol
methanogenesis
pyrosequencing
metagenomics biodensificación
arenas de alquitrán
biodegradación anaeróbica
metanógenos
extracción de hidrocarburos
petróleo
sólidos coloidales
metano
compañías petroleras
bioetanol
metanogénesis
pirosecuenciación

How to Cite

Cárdenas-Manríquez, M., Young, R. F., Semple, K. M., Li, C., Coy, D., Underwood, E., Siddique, T., Guigard, S., Bressler, D. C., Gupta, R., & Foght, J. M. (2020). Microbially-mediated de-watering and consolidation (“Biodensification”) of oil sands mature fine tailings, amended with agri-business by-products. Nova Scientia, 12(24). https://doi.org/10.21640/ns.v12i24.2243

Abstract

Oil sands surface mining operations in northeastern, Alberta, Canada produce enormous volumes of fluid fine tailings, an aqueous suspension of fine clays, sand, unrecovered bitumen, and diluent hydrocarbons. The tailings are deposited and retained on-site in large settling basins where the colloidal solids sediment and consolidate very slowly by gravity and pore water collects at the surface for re-use. Tailings ‘biodensification’, mediated by indigenous microbes that produce methane and/or carbon dioxide, is a phenomenon observed in situ and in vitro whereby tailings with active anaerobic microbial communities consolidate and de-water faster than predicted by gravitational (self-weighted) consolidation alone. To exploit this phenomenon, we used organic amendments to stimulate endogenous anaerobic tailings microorganisms. Tailings from three different operators were amended with agri-business by-products, placed in 100-mL microcosms and 1.5-L settling columns, and monitored for methanogenesis, pore water recovery, and solids densification. Several amendments increased methane production and accelerated biodensification compared to unamended and negative controls. Hydrolyzed canola, blood meal, bone meal and glycerol generally accelerated biodensification, stimulated methane production and supported growth of methanogens and fermentative microbes. Amendment altered the chemistry of the tailings, generally decreasing pH, increasing conductivity and magnesium, potassium, sodium, and bicarbonate concentrations. Biodensification is a potential engineered technology for accelerating water recovery and reducing the volume of stored oil sands tailings.
https://doi.org/10.21640/ns.v12i24.2243
PDF
XML

References

An D., Caffrey S. M., Soh J., Agrawal A., Brown D., Budwill K., Dong X., Dunfield P. F., Foght J., Gieg L. M., Hallam S. J., Hanson N. W., He Z., Jack T.R., Klassen J., Konwar K. M., Kuatsjah E., Li C., Larter S., Leopatra V., Nesbᴓ C. L., Oldenburg T., Pagé A. P., Ramos- Padrón, E., Rochman F. F., Saidi-Mehrabad A., Sensen C. W., Sipahimalani P., Song Y. C., Wilson S., Wolbring G., Wong M., Voordouw G. (2013). Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environmental Science and Technology, 47(18):10708-10717. DOI: 10.1021/es4020184.

Arkell N., Kuznetsov P., Kuznetsova A., Foght J. M., Siddique T. (2015). Microbial metabolism alters porewater chemistry and increases consolidation of oil sands tailings. Journal of Environmental Quality. 44(1): 145-153. DOI:10.2134/jeq2014.04.0164.

BGC Engineering. (2010). Oil Sands Tailings Technology Review. OSRIN Report No. TR-1. 136 pp. http://hdl.handle.net/10402/era.17555 (accessed 30 October 2019).

Burkus Z., Wheler J., Pletcher S. (2014). GHG emissions from oil sands tailings ponds: Overview and modelling based on fermentable substrates. Alberta Environment Sustainable Resources Develovement. doi.org/10.7939/R3F188 (accessed 22 Oct 2019).

Cochran W. (1950). Estimation of bacterial densities by means of the Most Probable Number. Biometrics 6(2): 105-116.

Eckert W. F., Masliyah J. H., Gray M. R., Fedorak P. M. (1996). Prediction of sedimentation and consolidation of fine tails. AIChE J 42(4): 960-972. doi.org/10.1002/aic.690420409.

Fedorak P. M., Coy D. C., Dudas M. J., Simpson M. J., Rennenberg A. J., MacKinnon M. D. (2003). Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. Journal of Environmental Engineering and Science. 2(3):199-211. doi.org/10.1139/s03-022.

Foght J., Aislabie J., Turner S., Brown C. E., Ryburn J., Saul D. J., Lawson W. (2004). Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47(4): 329–340. doi.org/10.1007/s00248-003-1036-5.

Foght J. M., Gieg L. M., Siddique T. (2017). The microbiology of oil sands tailings: past, present, future. FEMS Microbiology Ecology. 93(5): doi:10.1093/femsec/fix034.

Foght, J. M., Siddique, T. and Gieg, L. M. (2014). Protocols for Handling, Storing, and Cultivating Oil Sands Tailings Ponds Materials for Microbial and Molecular Biological Study. In: T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, DOI 10.1007/8623_2014_26, Springer-Verlag Berlin Heidelberg.

Holowenko F. M., MacKinnon M. D., Fedorak P. M. (2000). Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Canadian Journal of Microbiology. 46(10):927-937.

Hulecki J. C., Foght J. M., Fedorak P. M. (2010). Storage of oil field-produced waters alters their chemical and microbiological characteristics. Joirnal of Industrial Microbiology. 37(5):471–481. doi.org/10.1007/s10295-010-0693-x.

Kong, J. D., Wang, H., Siddique, T., Foght, J., Semple, S., Burkus, Z., Lewis, M. A. (2019). Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings. Science Total Environment. 694:133645 doi.org/10.1016/j.scitotenv.2019.133645.

Li C. (2010). Methanogenesis in oil sands tailings: An analysis of the microbial community involved and its effects on tailings densification. University of Alberta MSc thesis, 177 pp.

Penner T. J., Foght J. M. (2010). Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Canadian Journal of Microbiology. 56(6): 459-470. doi.org/10.1139/w10-029.

Ramos-Padrón, E, Bordenave S., Lin S., Bhaskar I. M., Dong X., Sensen C. W., Fournier J., Voordouw G., Gieg L. M. (2011). Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environmental Science and Technology. 45(2): 439-446. DOI: 10.1021/es1028487.

Roberts, D. J. (2002). Methods for Assessing Anaerobic Biodegradation Potential. In: Manual of Environmental Microbiology. Hurst, C.J. R.L. Crawford, G.R. Knudson, M.J. McInerney and L.D. Stetzenbach (eds.) ASM Press, Washington CD, pp. 1008-1017.

Siddique T., Fedorak P. M., Foght J. M. (2006). Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environmental Science and Technology. 40(17): 5459-5464. doi.org/10.1021/es060993m.

Siddique T., Fedorak P. M., MacKinnon M. D., Foght J. M. (2007). Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environmental Science and Technology. 41(7): 2350-2356. doi.org/10.1021/es062852q.

Siddique T., Gupta R., Fedorak P. M., MacKinnon M. D., Foght J. M. (2008). A first approximation model to predict methane generation from an oil sands tailings settling basin. Chemosphere 72:1573-1580.

Siddique T., Penner T., Semple K., Foght J. M. (2011). Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environmental Science and Technology 45(13): 5892-5899. doi.org/10.1021/es200649t.

Siddique T., Kuznetsov P., Kuznetsova A., Arkell N., Young R., Li C., Guigard S., Foght J. M. (2014a). Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Frontiers in Microbiology. 5: 106. DOI: 10.3389/fmicb.2014.00106.

Siddique T., Kuznetsov P., Kuznetsova A., Arkell N., Young R., Li C., Guigard S., Foght J. M. (2014b). Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Frontiers in Microbiology. 5: 107. DOI: 10.3389/fmicb.2014.00107.

Smith M. R., Mah R. A. (1978). Growth and methanogenesis by Methanosarcina Strain 227 on acetate and methanol. Applied and Environmental Microbiology 36(6): 870-879.

Soh J., Dong X., Caffrey S. M., Voordouw G., Sensen C. W. (2013). Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface. Journal of Biotechnology. 167(4): 393-403. DOI:10.1016/jbiotec.2013.07.004.

Wilson S. L., Li C., Ramos-Padrón, E., Nesbø C., Soh J., Sensen C. W., Voordouw G., Foght J., Gieg L. M. (2016). Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. Journal of Biotechnology, 235: 187–196. DOI:10.1016/j.jbiotec.2016.06.030.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia