Microbially-mediated de-watering and consolidation (“Biodensification”) of oil sands mature fine tailings, amended with agri-business by-products

Marcela Cárdenas-Manríquez, Rozlyn F. Young, Kathleen M. Semple, Carmen Li, Debora Coy, Eleisha Underwood, Tariq Siddique, Selma Guigard, David C. Bressler, Rajender Gupta, Julia M. Foght

Abstract


Oil sands surface mining operations in northeastern, Alberta, Canada produce enormous volumes of fluid fine tailings, an aqueous suspension of fine clays, sand, unrecovered bitumen, and diluent hydrocarbons. The tailings are deposited and retained on-site in large settling basins where the colloidal solids sediment and consolidate very slowly by gravity and pore water collects at the surface for re-use. Tailings ‘biodensification’, mediated by indigenous microbes that produce methane and/or carbon dioxide, is a phenomenon observed in situ and in vitro whereby tailings with active anaerobic microbial communities consolidate and de-water faster than predicted by gravitational (self-weighted) consolidation alone. To exploit this phenomenon, we used organic amendments to stimulate endogenous anaerobic tailings microorganisms. Tailings from three different operators were amended with agri-business by-products, placed in 100-mL microcosms and 1.5-L settling columns, and monitored for methanogenesis, pore water recovery, and solids densification. Several amendments increased methane production and accelerated biodensification compared to unamended and negative controls. Hydrolyzed canola, blood meal, bone meal and glycerol generally accelerated biodensification, stimulated methane production and supported growth of methanogens and fermentative microbes. Amendment altered the chemistry of the tailings, generally decreasing pH, increasing conductivity and magnesium, potassium, sodium, and bicarbonate concentrations. Biodensification is a potential engineered technology for accelerating water recovery and reducing the volume of stored oil sands tailings.

Keywords


biodensification; oil sands tailings; anaerobic biodegradation; methanogens; ; petroleum; colloidal solids; methane; bioethanol; methanogenesis; pyrosequencing; metagenomics

Full Text:

PDF XML

References


An D., Caffrey S. M., Soh J., Agrawal A., Brown D., Budwill K., Dong X., Dunfield P. F., Foght J., Gieg L. M., Hallam S. J., Hanson N. W., He Z., Jack T.R., Klassen J., Konwar K. M., Kuatsjah E., Li C., Larter S., Leopatra V., Nesbᴓ C. L., Oldenburg T., Pagé A. P., Ramos- Padrón, E., Rochman F. F., Saidi-Mehrabad A., Sensen C. W., Sipahimalani P., Song Y. C., Wilson S., Wolbring G., Wong M., Voordouw G. (2013). Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environmental Science and Technology, 47(18):10708-10717. DOI: 10.1021/es4020184.

Arkell N., Kuznetsov P., Kuznetsova A., Foght J. M., Siddique T. (2015). Microbial metabolism alters porewater chemistry and increases consolidation of oil sands tailings. Journal of Environmental Quality. 44(1): 145-153. DOI:10.2134/jeq2014.04.0164.

BGC Engineering. (2010). Oil Sands Tailings Technology Review. OSRIN Report No. TR-1. 136 pp. http://hdl.handle.net/10402/era.17555 (accessed 30 October 2019).

Burkus Z., Wheler J., Pletcher S. (2014). GHG emissions from oil sands tailings ponds: Overview and modelling based on fermentable substrates. Alberta Environment Sustainable Resources Develovement. doi.org/10.7939/R3F188 (accessed 22 Oct 2019).

Cochran W. (1950). Estimation of bacterial densities by means of the Most Probable Number. Biometrics 6(2): 105-116.

Eckert W. F., Masliyah J. H., Gray M. R., Fedorak P. M. (1996). Prediction of sedimentation and consolidation of fine tails. AIChE J 42(4): 960-972. doi.org/10.1002/aic.690420409.

Fedorak P. M., Coy D. C., Dudas M. J., Simpson M. J., Rennenberg A. J., MacKinnon M. D. (2003). Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. Journal of Environmental Engineering and Science. 2(3):199-211. doi.org/10.1139/s03-022.

Foght J., Aislabie J., Turner S., Brown C. E., Ryburn J., Saul D. J., Lawson W. (2004). Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47(4): 329–340. doi.org/10.1007/s00248-003-1036-5.

Foght J. M., Gieg L. M., Siddique T. (2017). The microbiology of oil sands tailings: past, present, future. FEMS Microbiology Ecology. 93(5): doi:10.1093/femsec/fix034.

Foght, J. M., Siddique, T. and Gieg, L. M. (2014). Protocols for Handling, Storing, and Cultivating Oil Sands Tailings Ponds Materials for Microbial and Molecular Biological Study. In: T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, DOI 10.1007/8623_2014_26, Springer-Verlag Berlin Heidelberg.

Holowenko F. M., MacKinnon M. D., Fedorak P. M. (2000). Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Canadian Journal of Microbiology. 46(10):927-937.

Hulecki J. C., Foght J. M., Fedorak P. M. (2010). Storage of oil field-produced waters alters their chemical and microbiological characteristics. Joirnal of Industrial Microbiology. 37(5):471–481. doi.org/10.1007/s10295-010-0693-x.

Kong, J. D., Wang, H., Siddique, T., Foght, J., Semple, S., Burkus, Z., Lewis, M. A. (2019). Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings. Science Total Environment. 694:133645 doi.org/10.1016/j.scitotenv.2019.133645.

Li C. (2010). Methanogenesis in oil sands tailings: An analysis of the microbial community involved and its effects on tailings densification. University of Alberta MSc thesis, 177 pp.

Penner T. J., Foght J. M. (2010). Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Canadian Journal of Microbiology. 56(6): 459-470. doi.org/10.1139/w10-029.

Ramos-Padrón, E, Bordenave S., Lin S., Bhaskar I. M., Dong X., Sensen C. W., Fournier J., Voordouw G., Gieg L. M. (2011). Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environmental Science and Technology. 45(2): 439-446. DOI: 10.1021/es1028487.

Roberts, D. J. (2002). Methods for Assessing Anaerobic Biodegradation Potential. In: Manual of Environmental Microbiology. Hurst, C.J. R.L. Crawford, G.R. Knudson, M.J. McInerney and L.D. Stetzenbach (eds.) ASM Press, Washington CD, pp. 1008-1017.

Siddique T., Fedorak P. M., Foght J. M. (2006). Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environmental Science and Technology. 40(17): 5459-5464. doi.org/10.1021/es060993m.

Siddique T., Fedorak P. M., MacKinnon M. D., Foght J. M. (2007). Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environmental Science and Technology. 41(7): 2350-2356. doi.org/10.1021/es062852q.

Siddique T., Gupta R., Fedorak P. M., MacKinnon M. D., Foght J. M. (2008). A first approximation model to predict methane generation from an oil sands tailings settling basin. Chemosphere 72:1573-1580.

Siddique T., Penner T., Semple K., Foght J. M. (2011). Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environmental Science and Technology 45(13): 5892-5899. doi.org/10.1021/es200649t.

Siddique T., Kuznetsov P., Kuznetsova A., Arkell N., Young R., Li C., Guigard S., Foght J. M. (2014a). Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Frontiers in Microbiology. 5: 106. DOI: 10.3389/fmicb.2014.00106.

Siddique T., Kuznetsov P., Kuznetsova A., Arkell N., Young R., Li C., Guigard S., Foght J. M. (2014b). Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Frontiers in Microbiology. 5: 107. DOI: 10.3389/fmicb.2014.00107.

Smith M. R., Mah R. A. (1978). Growth and methanogenesis by Methanosarcina Strain 227 on acetate and methanol. Applied and Environmental Microbiology 36(6): 870-879.

Soh J., Dong X., Caffrey S. M., Voordouw G., Sensen C. W. (2013). Phoenix 2: a locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface. Journal of Biotechnology. 167(4): 393-403. DOI:10.1016/jbiotec.2013.07.004.

Wilson S. L., Li C., Ramos-Padrón, E., Nesbø C., Soh J., Sensen C. W., Voordouw G., Foght J., Gieg L. M. (2016). Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. Journal of Biotechnology, 235: 187–196. DOI:10.1016/j.jbiotec.2016.06.030.




DOI: https://doi.org/10.21640/ns.v12i24.2243

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, http://novascientia.delasalle.edu.mx/. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.