Germination and biostimulation in Acacia farnesiana (L.) Willd y Ebenopsis ebano (Berl.) Barneby for the removal of As, Cd and Zn from sewage sludge by extraction of shale gas in Tamaulipas
PDF (Español (España))
XML (Español (España))

Keywords

substrates
seeds
thorn scrub
bio stimulation
residual sludge
gas shale
germination
hydrocarbons
fracking
environmental damage
Acacia farnesiana
Ebenopsis ebano
atomic emission spectroscopy
Kjeldahl method
metals removal sustratos
semillas
matorral espinoso
metales pesados
bioestimulación
lodos residuales
gas shale
germinación
hidrocarburos
fracturación hidráulica
daño ambiental
Acacia farnesiana
Ebenopsis ebano
espectroscopía de emisión atómica

How to Cite

Sánchez-Puente, Z. C., Chacón-Hernández, J. C., Alarcón, A., Rocandio-Rodríguez, M., & Mora-Ravelo, S. G. (2020). Germination and biostimulation in Acacia farnesiana (L.) Willd y Ebenopsis ebano (Berl.) Barneby for the removal of As, Cd and Zn from sewage sludge by extraction of shale gas in Tamaulipas. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2184

Abstract

Introduction: There is currently a growing demand for hydrocarbons, which has led to the use of non-dynamic technologies, such as hydraulic fracturing. However, this technique causes environmental damages to ecosystems due to the generation of sewage sludge such as the thorny Tamaulipas scrubland that is located within the Burgos basin, an area of economic relevance for conventional gas exploitation. The objective of the study was to evaluate the germination of Acacia farnesiana (L.) Willd and Ebenopsis ebano (Berl.) Barneby and its potential use with biostimulation in the removal of As, Cd and Zn in sewage sludge from the extraction of shale gas.

Method: Seeds of Acacia farnesiana (L.) Willd and Ebenopsis ebano (Berl.) Barneby were collected in the ejido El Zaus, municipality of Hidalgo, Tamaulipas. The germination index (GI) was evaluated according to Zucconi. Twenty-three treatments were set by considering the substrates (two types of slugde, soil and a mixture of both substrates), the two species of seedlings (Acacia and Ebenopsis), and the biostimulation with a 46% urea solution. Pots of 3 kg were used as experimental units, in where three seedlings were planted with three replicates per treatment. A final sampling of each treatment was performed for the corresponding determinations of As, Cd, Zn, P and K, which were carried out by extraction of DTPA, and subsequently carried out by plasma induction atomic emission spectroscopy (ICP-OES Varian model 725-ES, Agilent Mulgrave, Australia). The total nitrogen (Nt) in seedlings and substrates, was carried out using the micro Kjeldahl method, and organic matter (OM) content was estimated by Walkely Black method.

Results: Differences in IG were observed (P = 0.02374). Results indicated that the structural (size) and physiological (embryo viability) characteristics of the seeds are related to the germination capacity of both species under contaminated substrates. Significant differences were found in the concentrations of As, Cd, and Zn, through treatment (P <0.0001). The accumulation of As, Cd and Zn, was determined by the structure of the plant (root > stem > leaf).

Conclusion: Germination index of Acacia farnesiana (L.) Willd and Ebenopsis ebano (Berl.) Barneby in aqueous substrates of residual sludge is based on structural and physiological characteristics of each species. Removal of As, Cd and Zn, was influenced by the species, the substrate, the urea biostimulation, and the presence of OM, which confer the plug effect that controls the alkalinity of the substrates and therefore, the mobility of the metals.

https://doi.org/10.21640/ns.v12i25.2184
PDF (Español (España))
XML (Español (España))

References

Agamuthu, P., Tan, Y. & Fauziah, S. (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes, Procedia Environmental Sciences, 18, 694-702. DOI: https://doi.org/10.1016/j.proenv.2013.04.094

Avci, H., & Deveci, T. (2013). Assessment of trace element concentrations in soil and plants from cropland irrigated with wastewater. Ecotoxicology And Environmental Safety, 98, 283-291. DOI: 10.1016/j.ecoenv.2013.08.013

Ayala Cordero, G., Terrazas, T., López Mata, L. & Trejo, C. (2004). Variación en el tamaño y peso de la semilla y su relación con la germinación en una población de Stenocereus beneckei. Interciencia, 29(12), 692- 697. Disponible en: https://www.redalyc.org/articulo.oa?id=33909907

Baloch, H.A., DiTomasso, A. & Watson AK. (2001). Intrapopulation variation in Abutilon theophrasti seed mass and its relationship to seed germinability. Seed Science Research, 11, 335-343. Disponible en: https://weedecology.css.cornell.edu/pubs/Published%20Seed%20Sci%20Res.%2011%20335-343.pdf

Bernal, M., Clemente, R., Vázquez, S. & Walker, D. (2007). Aplicación de la fitorremediación a los suelos contaminados por metales pesados en Aznalcóllar. Ecosistemas, 16(2), 1-14. DOI: 10.7818/re.2014.16-2.00

Bolan, N.S., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B. & Scheckel, K. (2014). Remediation of heavy metal(loid)s 50 contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141-166. DOI: 10.1016/j.jhazmat.2013.12.018

Brown, S., Chaney, R. L., Hallfrisch, J. G. & Xue, Q. (2003). Effect of Biosolids Processing on Lead Bioavailability in an Urban Soil. Journal of Environmental Quality, 32, 100-108. DOI: 10.2134/jeq2003.1000

Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A. & Ok, Y.S. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews In Plant Sciences, 33(5), 374-391. DOI: 10.1080/07352689.2014.903747

Energy Information Agency. EIA. (2013). Word Shale Gas Resources: An Initial Assessment of An Assessment of 137 Shale Formations in 41 Countries Outside the United States. 27 pp.

Emino, E. & Warman, P. (2004). Biological assay for compost quality. Compost Science & Utilization, 12(4), 342-348. DOI: https://doi.org/10.1080/1065657X.2004.10702203

Euán Collí, R. E. (2016). Potencial, Impacto y Desarrollo de Shale Gas en México. (Tesis de Ingeniero Petrolero). Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México.

Gairola, K.C., Nautiyal, A. R. & Dwivedi, A. K. (2011). Effect of temperatures and germination media on seed germination of Jatropha Curcas Linn. Advances in Bioresearch, 2(2), 66-71.

García Pérez, J. F., Aguirre Calderón, O., Estrada Castillón, E., Flores Rivas, J., Jiménez Pérez, J. & Jurado Ybarra, E. (2007). Germinación y establecimiento de plantas nativas del matorral tamaulipeco y una especie introducida en un gradiente de elevación. Madera y Bosques, 13, 99-117. DOI: https://doi.org/10.21829/myb.2007.1311238

García-Torres, R., Ríos-Leal, E., Martínez Toledo, A., Ramos- Morales, F. R., Cruz-Sánchez, J. S. & Cuevas-Díaz, M. C. (2011). Uso de cachaza y bagazo de caña de azúcar en la remoción de hidrocarburos en suelo contaminado. Revista Internacional de Contaminación Ambiental, 27, 31-39.

Harkness, S. J., Darrah, H. T., Warner, R. N., Whyte, J. C., Moore, T. M., Millot, R., Kloppmann, W., Jackson, B. R. & Vengosh, A. (2017). The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochimica et Cosmochimica Acta, 208, 302-334. DOI: 10.1016/j.gca.2017.03.039

Ibrahim, M., Alsahli, A. & El-Gaaly, G. (2013). Evaluation of phytoremediation potential of six wild plants for metal in a site polluted by industrial wastes: a field study in Riyadh, Saudi Arabia. Pak. J. Bot, 42(2), 571-576.

Ikhajiagbe, B., Anoliefo, G, Oshomoh, E. & Agbonrienrien. B. (2013). Effects of watering regimes on the intrinsic qualities of bioremediated waste engine oil-polluted soil. Annual Research & Review in Biology, 3(2), 107–123.

Jiménez Pérez, J., Alanís Rodríguez, E., Aguirre Calderón, O., Pando Moreno, M. & González Tagle, M. (2009). Análisis sobre el efecto del uso del suelo en diversidad estructural del matorral espinoso tamaulipeco. Madera y Bosques, 15(3), 5-20. DOI: https://doi.org/10.21829/myb.2009.1531183

Kabata-Pendias, A. & Pendias, H. (2000). Trace Elements in Soils and Plants. (3rd edition). Boca Ratón, Florida, USA: CRC Press.

Kothe, E. & Varma, A. (2012). Bio-Geo Interactions in Metal-Contaminated Soils, Soil Biology 31. Chapter 15: The Role of Organic Matter in the Mobility of Metals in Contaminated Catchments. Fârcâsanu, I.C., Iordache, C. & Neagoe, A. Springer-Verlag Berlin Heidelberg, 279-296 pp.

Landeros-Márquez, O., Tejo-Calzada, R., Reveles-Hernández, M., Valdez-Cepeda, R. D., Arreola-Ávila, J. G., Pedroza-Sandoval, A. & Ruíz-Torres J. (2011). Uso potencial del huizache (Acacia farnesiana L. Will) en la fitorremediación de suelos contaminados con plomo. Revista Chapingo. Serie ciencias forestales y del ambiente, 17, 11-20. DOI: https://doi.org/10.5154/r.rchscfa.2010.08.059

Larcher, W. (2003). Physiological plant ecology: Berlin: Ecology Springer, Verlog.

Pilon-Smits, E. (2005). Phytorremediation. Annual Review of Plant Biology, 56, 15-39. DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144214

Pohlert, T. (2014). The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R package. https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf

Probert, R. J. (2010). The role of temperature in the regulation of seed dormancy and germination (261-292). In: Fenner, M. (Ed.). Seeds: the ecology of regeneration in plant communities. London, England: CABI Publishing.

Rivas-Medina, G., González-Cervantes, G., Valencia-Castro, C. M., Sánchez-Cohen, I., & Villanueva-Díaz, J. (2005). Morfología y escarificación de la semilla de mezquite, huizache y ahuehuete. Técnica Pecuaria México, 43(3), 441–448. Obtenido de http:// redalyc.uaemex.mx/pdf/613/61343314.pdf

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

Secretaría de Energía. SENER. (2012). ¿Qué es el Shale Gas/Oil y cuál es su importancia? Disponible en: http://www.energia.gob.mx/webSener/shale/shale_sp.html

US EPA (2005a). Ecological Screening Levels for Cadmium. Disponible en: http://www.epa.gov/ecotox/ecossl/pdf/eco-ssl_cadmium.pdf

US EPA (2007b). Ecological Screening Levels for Zinc. Disponible en: http://www.epa.gov/ecotox/ecossl/pdf/eco-ssl_zinc.pdf

Varnero, M., Rojas C. & Orellana R. (2007). Índices de fitotoxicidad en residuos orgánicos durante el compostaje. Revista de la ciencia del suelo y nutrición vegetal, 7(1), 28-37. DOI: http://dx.doi.org/10.4067/S0718-27912007000100003

Wheater, C. P., & Cook, P. A. (2005). Using statistics to understand the environment. London, UK: Routledge Taylor & Francis. Obtenido de http://www.eBookstore.tandf.co.uk.

Yildirim, D. & Sasmaz, A. (2017). Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). Journal of Geochemical Exploration, 182b, 228-234.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia