Detection of the phlD and hcnC genes in antagonistic siderophore producing bacteria associated to Rubus fruticosus L.

Gustavo Santoyo, Benjamín Hernández-Flores, Julie Hernández Salmerón, Daniel Rojas Solís, Miguel Contreras-Pérez, Pedro D. Loaeza-Lara, Ma. del Carmen Orozco-Mosqueda

Abstract


Introduction: The plants harbor a microbiome that includes plant growth-promoting bacteria, which can act as biological agents that antagonize the growth of phytopathogens, diminishing or eliminating their harmful effects in plants. In this work, the presence and association of the phlD and hcnC antifungal genes with the production of siderophores (Fe chelating agents) in bacteria isolated from the endosphere and rhizosphere of blackberry plants (Rubus fruticosus L.) was evaluated.

Method: In total, 410 bacterial isolates associated with blackberry plants (Rubus fruticosus L.), from the rhizosphere (205) and endosphere (205) were analyzed for the detection of the phlD and hcnC antimicrobial genes by polymerase chain reaction and subsequent sequencing. The search of the genes was carried out only in siderophore producing strains, using the CAS medium (Chromium Azurol) for its production. Of the strains selected, antagonism bioassays were carried out against the plant pathogens Botrytis cinerea, Fusarium oxysporum, F. solani and Rhizoctonia solani.

Results: The results showed that from the 410 bacterial isolates analyzed here (50% endophytes and 50% rhizospheric), it was confirmed that 70 strains were siderophores-producing (24 from rhizosphere and 46 endophytes). It was observed that 70% (49/70) of the siderophore producing strains present either one or two of the phlD or hcnC genes. The nucleotide sequences of the phlD and hcnC genes showed high identity to homologous genes to species Pseudomonas sp., P. fluorescens, P. chlororaphis, P. protegens, P. putida and P. brassicacearum. The abundance of the hcnC gene was also higher in the endophytic and rhizospheric isolates (36/70), with respect to the phlD gene (13/70). Greater detection of phlD or hcnC genes was found in strains isolated from the endosphere (43/70), compared with those of rhizospheric origin (6/70). Finally, a high ratio was observed between the production of siderophores, the presence of genes phlD and hcnC with the antagonistic activity towards important phytopathogenic fungi, like Botrytis cinerea, Fusarium oxysporum, Fusarium solani and Rhizoctonia solani.

Conclusion: These results showed the potential to identify quickly, efficiently and at low cost, mechanisms of antagonism towards phytopatogens in bacteria associated with blackberry plants (Rubus fruticosus L.), such as siderophore production.


Keywords


biocontrol; 2,4-diacetylphloroglucinol; hydrogen cyanide; Pseudomonas; bacteria; plant growth; genes; microbes; plants; phytopathogens; blackberry; berries

References


Adesemoye, A.O. y Kloepper, J.W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85, 1-12.

Ahmad, F., Ahmad, I. y Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173-181.

Almario, J., Bruto, M., Vacheron, J., Prigent-Combaret, C., Moënne-Loccoz, Y., y Muller, D. (2017). Distribution of 2, 4-diacetylphloroglucinol biosynthetic genes among the Pseudomonas spp. reveals unexpected polyphyletism. Frontiers in Microbiology, 8, 1218.

Bangera, M.G. y Thomashow, L.S. (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2–87. Journal of Bacteriology, 181, 3155–3163.

Contreras, M., Loeza, P. D., Villegas, J., Farias, R., y Santoyo, G. (2016). A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus). Genetics and Molecular Research, 15, 1-10.

Coutinho, B.G., Licastro, D., Mendonça-Previato, L., Cámara, M. y Venturi, V. (2015). Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant-Microbe Interactions, 28, 10-21.

de Los Santos-Villalobos, S., Kremer, J. M., Parra-Cota, F. I., Hayano-Kanashiro, A. C., García-Ortega, L. F., Gunturu, S. K., y Peña-Cabriales, J. J. (2018). Draft genome of the fungicidal biological control agent Burkholderia anthina strain XXVI. Archives of Microbiology, 200, 803-810.

Glick, B.R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30-39.

González, F., Rebollar, S., Hernández, J., Morales, J., Ramírez, O. (2019). Situación actual y perspectivas de la producción de berries en México. Revista Mexicana de Agronegocios, 44, 260-272.

Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., del Carmen Orozco-Mosqueda, M., Macías-Rodríguez, L. I., Reyes-de la Cruz, H. y Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81, 83-92.

Hernández-Salmerón, J. E., Hernández-Flores, B. R., del Carmen Rocha-Granados, M., Loeza-Lara, P. D., y Santoyo, G. (2018). Hongos fitopatógenos modulan la expresión de los genes antimicrobianos phlD y hcnC de la rizobacteria Pseudomonas fluorescens UM270. Biotecnia, 20, 110-116.

Hernández-Salmerón, J. E., Hernández-León, R., Orozco-Mosqueda, M. D. C., Valencia-Cantero, E., Moreno-Hagelsieb, G. y Santoyo, G. (2016). Draft genome sequence of the biocontrol and plant growth-promoting rhizobacterium Pseudomonas fluorescens strain UM270. Standards in Genomic Sciences, 11, 5.

Heydari, A. y Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273-290.

Kloepper, J. W., Leong, J., Teintze, M., y Schroth, M. N. (1980). Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Current Microbiology, 4, 317-320.

Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Défago, G., Keel, C. y Haas, D. (1998). Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology, 180, 3187-3196.

Loaces, I., Ferrando, L., y Scavino, A.F. (2011). Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial ecology, 61, 606-618.

Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C. y Liu, Y. (2012). Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, 93, 1745-1753.

Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M., y Thomashow, L. S. (2001). Genetic diversity of phlD from 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology, 91, 35-43.

Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M. y Raaijmakers, J. M. (2011). Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 332, 1097-1100.

Pandya, M., Rajput, M. y Rajkumar, S. (2015). Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology, 84, 80-89.

Raaijmakers, J.M. y Weller, D.M. (2001). Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Applied and Environmental Microbiology, 67, 2545–2554.

Rajkumar, M., Ae, N., Prasad, M.N.V. y Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in biotechnology, 28, 142-149.

Ramos-Solano, B., García, J.A.L., Garcia-Villaraco, A., Algar, E., Garcia-Cristobal, J. y Mañero, F.J.G. (2010). Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant and Soil, 334, 189-197.

Rashid, S., Charles, T.C. y Glick, B.R. (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224.

Saini, R., Dudeja, S.S., Giri, R. y Kumar, V. (2015). Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. Journal of Basic Microbiology, 55, 74-81.

Santoyo G., Sánchez-Yáñez J.M. y de los Santos-Villalobos S. (2019). Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. In: Reinhardt D., Sharma A. (eds) Methods in Rhizosphere Biology Research. Rhizosphere Biology. Springer, Singapore.

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. y Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological research, 183, 92-99.

Santoyo, G., Orozco-Mosqueda, Ma. del C. y Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science & Technology, 22, 855-872.

Santoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, Ma. del C., Peña-Cabriales, J.J. y Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28, 53-60.

Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernández-Soberano, C. y Valencia-Cantero, E. (2013). The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma, 250, 1251-1262.

Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97, 250-256.

Williamson, B., Tudzynski, B., Tudzynski, P., y van Kan, J.A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561-580.

Winsor, G. L., Lam, D. K., Fleming, L., Lo, R., Whiteside, M. D., Yu, N.Y. y Brinkman, F. S. (2010). Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic acids research, 39, D596-D600.

Yang, F. y Cao, Y. (2012). Biosynthesis of phloroglucinol compounds in microorganisms. Applied Microbiology and Biotechnology, 93, 487-495.




DOI: https://doi.org/10.21640/ns.v12i24.2160

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, http://novascientia.delasalle.edu.mx/. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.