Crop Images Segmentation using Adaptive Morphologic Descriptors
XML
PDF

Keywords

segmentación de imagen
descriptor morfológico
detección de cultivos
UMDA
algoritmos
algoritmo K-Means
computación
imágenes digitales
elementos estructurales adaptativos
morfología matemática image segmentation
morphologic descriptor
crop detection
UMDA
algorithms
K-Means algorithm
computing
digital images
adaptive structural elements
mathematical morphology

How to Cite

Gil Ríos, M. Ángel, López Hernández, J. M., Juárez Ramírez, D., Ruiz Robledo, M. del C., Badillo Canchola, L. P., & Aranda López, A. (2020). Crop Images Segmentation using Adaptive Morphologic Descriptors. Nova Scientia, 12(24). https://doi.org/10.21640/ns.v12i24.2152

Abstract

This research is focused on the segmentation improvement of crop images by using adaptive morphologic descriptors instead of classic algorithms like K-means and the top-hat operator using predefined shapes like disk or diamond. Obtained results shows that using an adaptive morphologic descriptor improves the segmentation performance against the classic shapes like disc and diamond. In order to measure the process a set of 60 crop images was used including their respective ground-truth images. The images were segmented using the K-Means algorithm and the top-hat operator with the disk and diamond shapes at different sizes into a range to validate their performance. In order to generate the adaptive morphologic descriptor, the Univariated Marginal Distribution Algorithm was used with no constraints by exploring a range of different sizes. Also, performance metrics like receiver operating characteristic and accuracy rate were applied to the generated data in order to assess the results.

https://doi.org/10.21640/ns.v12i24.2152
XML
PDF

References

Alba E., Madera J., Dorronsoro B., Ochoa A. and Soto M. (2006). Theory and Practice of Cellular UMDA for Discrete Optimization, 242-251. Parallel Problem Solving from Nature - PPSN IX. Vol. 4193. Springer.

Bouraoui B., Ronse C., Baruthio J., Passat N. and Germain P. (2008). Fully automatic 3D segmentation of coronary arteries based on mathematical motphology, 1059-1062. 5th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE.

Cruz Aceves I., Hernández Aguirre A. and Aviña Cervantes J.G. (2015). Automatic segmentation of coronary arteries using a multiscale Top-Hat operator and multiobjective optimization, 297-320. Revista Electrónica Nova Scientia.

Eiho S. and Qian Y. (1997). Detection of coronary artery tree using morphological operator, 696-699. Computers in cardiology. Vol. 24. IEEE.

Frangi A.F., Niessen, W.J., Vincken K.L. and Viergever M.A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. Vol. 1496. Springer.

Guerrero-Turrubiates J.J. Cruz-Aceves I., Ledesma S., Sierra-Hernández J.M., Velasco J., Avina-Cervantes J.G., Avila-Garcia M.S., Rostro-Gonzalez H. and Rojas-Laguna R. (2017). Fast parabola detection using estimation of distribution algorithms, 1-13. Computational and Mathematical Methods in Medicine. Hindawi.

Haugh S. and Ostermann J. (2015). A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks, 105-116. Springer Editorial.

Hauschild M. and Pelikan M. (2011). An introduction and survey of estimation of distribution algorithms, 111-128. Swarm and Evolutionary Computation. Vol. 1.

Heinz M. and Mahnig T. (2001). Evolutionary algorithms: From recombination to search distributions, 135-173. Springer.

Hisashi H. (2005). Estimation of Distribution Algorithms with Mutation, 112-121. European Conference on Evolutionary Computation in Combinatorial Optimization. Springer.

Hu, J., Kashi, R., Lopresti, D., Nagy, G. and Wilfong, G. (2001). Why Table Ground-Truthing is Hard, 129-133. Proceedings of Sixth International Conference on Document Analysis and Recognition. IEEE.

Jaware, T., Badgujar R.D. and Patil, G. (2012). Crop Disease Detection using Image Segmentation. Proceedings of "Conference on Advances in Communication and Computing (NCACC'12)”, 190-194. India: R.C. Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra.

Jian-zhuang, L. and Wen-qing, L. (1991). The Automatic threshold of gray level pictures via Two-dimentional Otsu Method, 325-327. International Conference on Circuits and Systems. China.

MacQueen J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Fifth Berkeley Symposium. Los Angeles: University of California.

Marler R. T. and Arora J. S. (2010). The weighted sum method for multi-objective optimization: new insights, Struct, 853-862. Multidiscipl. Optim. Vol. 41.

Meyer F. (1977). Contrast feature extraction. Quantitative Analysis of Microstructures in Material Scences, Biology and Medicine.

Patil R., Udgave S., More S., Nemishte D. and Kasture M. (2016). Grape Leaf Disease Detection Using K-means Clustering Algorithm. International Research Journal of Engineering and Technology (IRJET), 2330-2333. Vol. 3.

Qu, Z. and Hang, L. Research on Image Segmentation Based on the Improved Otsu Algorithm. (2010). 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics, 228-231. IEEE.

Soille P. (1999). Morphological Image Analysis: Principles and Applications. Springer-Verlag Editorial.

Sun K. and Sang, N. (2008). Morphological enhancement of vascular angiogram with multiscale detected by gabor filters. Electronic letters. Vol. 4.

Swets J. (1988). Measuring the Accuracy of Diagnostic Systems. Science 240(4857), 1285-1293.

Topon Kumar P. and Hitoshi I. (2003). Reinforcement Learning Estimation of Distribution Algorithm, 1259-1270. Genetic and Evolutionary Computation Conference. Springer.

Vala, H. and Baxi, A. (2013). A Review on Otsu Image Segmentation Algorithm, 387-389. Vol. 2.

Wang S, Li B. and Zhou S. (2012). A Segmentation Method of Coronary Angiograms Based on Multi-scale Filtering and Region-Growing. Conference: Biomedical Engineering and Biotechnology (iCBEB), 2012.

Zhu W., Zeng N. and Wang N. (2010). Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS ® Implementations. NESUG 2010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia