Growth promotion on wheat (Triticum turgidum L. subsp. durum) by co-inoculation of native Bacillus strains isolated from the Yaqui Valley, Mexico

Jonathan Rojas Padilla, Luis Abraham Chaparro Encinas, Rosa Icela Robles Montoya, Sergio de los Santos Villalobos

Abstract


Introduction: The rising demand for food worldwide required the development of sustainable production alternatives. Plant growth-promoting rhizobacteria (PGPR) is a group of rhizospheric bacteria with the ability to promote good plant health and growth, as well as to restore soil fertility. The objective of this study was to evaluate the growth promotion of wheat (Triticum turgidum L. subsp. durum) plants, by co-inoculation of native Bacillus strains isolated from the Yaqui Valley, Mexico, for their potential use as a microbial inoculant.

Methods: Three bacterial strains obtained from the Collection of Edaphic Microorganisms and Native Endophytes (COLMENA), isolated from wheat commercial fields in the Yaqui Valley, were studied. First, the molecular identification of strains was performed by sequencing the 16S rRNA gene, by using the Sanger platform. In addition, bacterial strains were metabolically characterized by functional activities associated with the promotion of plant growth (production of indoles, solubilization of insoluble phosphorus, and production of siderophores). Finally, the impact of the inoculation of these individual strains, and in consortia was determined in durum wheat (Triticum turgidum L subsp. durum), simulating the edaphoclimatic conditions of the Yaqui Valley. The morphometric variables measured were aerial and root length, aerial and root dry weight, and biovolume index.

Results: The strains TRQ8, TRQ65, and TE3T were taxonomically affiliated with B. megaterium, B. paralicheniformis, and B. cabrialesii, respectively. This classification was supported by its macro-microscopic characteristics such as its bacillary form and Gram-positive staining, which are characteristic of this bacterial genus. Those strains had the ability to produce indoles, strain B. paralicheniformis TRQ65 had the highest production with 39.29 µg/mL. All studied strains showed the ability to solubilize insoluble phosphorus, solubilization index ranged from 1.37 to 1.43. Finally, only B. megaterium TRQ8 showed a siderophore production index of 8.17. Inoculation of the B. megaterium TRQ8 + B. paralicheniformis TRQ65 consortium showed the greatest increases in the 5 variables measured, significant difference (p <0.05) vs. the un-inoculated treatment, aerial and radical length showed an increase of 6 and 10%, respectively, while aerial dry biomass increased 60%, and root dry weight increase 82%. This consortium showed an 18% higher biovolume index than the un-inoculated treatment.

Discussion or Conclusion: The strains studied showed growth promotion traits in vitro and in vivo. However, co-inoculation of these strains increased their ability to promote growth in wheat plants. Therefore, the mechanisms associated with this effect, as well as their ecological functions and interaction with the biotic and abiotic factors of agro-systems must be further studied for extensive use as a microbial inoculant.


Keywords


PGPR; sustainable production; bacterial consortium; microbial inoculant; rhizobacteria; plant growth; soil fertility; wheat; Triticum turgidum L; sequencing genetics; edaphic microorganisms

References


Aguirre, J. B. R., Gómez, L. Z. O., Villalobos, S. D. L. S., & Sánchez, M. L. (2017). Production of polyhydroxybutyrate from milk whey fermentation by Bacillus Production of polyhydroxybutyrate from milk whey fermentation by Bacillus megaterium TRQ8. Revista Latinoamericana de Recursos Naturales, 13(1), 24–31.

Akinrinlola, R. J., Yuen, G. Y., Drijber, R. A., & Adesemoye, A. O. (2018). Evaluation of Bacillus Strains for Plant Growth Promotion and Predictability of Efficacy by in vitro Physiological Traits. International Journal of Microbiology, 1–11. DOI: https://doi.org/10.1155/2018/5686874.

Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39–45. DOI: https://doi.org/10.1007/BF00369386.

Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology. DOI: https://doi.org/10.1007/s11274-008-9918-9.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2.

Angulo, V. C., Sanfuentes, E. A., Rodríguez, F., & Sossa, Y. K. E. (2014). Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens. Revista Argentina de Microbiologia, 46(4), 338–347. DOI: https://doi.org/10.1016/S0325-7541(14)70093-8.

Antoun, H. (2013). Plant-Growth-Promoting Rhizobacteria. Brenner’s Encyclopedia of Genetics: Second Edition, 353–355. DOI: https://doi.org/10.1016/B978-0-12-374984-0.01169-4.

Asseng, S. (2015). Uncertainties of Climate Change Impacts in Agriculture. Procedia Environmental Sciences. DOI: https://doi.org/10.1016/j.proenv.2015.07.276.

Balseiro-Romero, M., Gkorezis, P., Kidd, P. S., Van Hamme, J., Weyens, N., Monterroso, C., & Vangronsveld, J. (2017). Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Science of The Total Environment, 581–582, 676–688. DOI: https://doi.org/10.1016/J.SCITOTENV.2016.12.180.

Borlaug, N. E. (1968). Wheat Breeding and its Impact on World Food Supply. Third International Wheat Genetics Symposium.

Boopathy, R., Kern, C., & Corbin, A. (2015). Use of Bacillus consortium in waste digestion and pathogen control in shrimp aquaculture. International Biodeterioration & Biodegradation, 102, 159–164. DOI:10.1016/j.ibiod.2015.02.001.

Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 26(9), 483–489. DOI: https://doi.org/10.1016/j.tibtech.2008.05.004.

Bresler, M. M., Rosser, S. J., Basran, A., & Bruce, N. C. (2000). Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Applied and Environmental Microbiology, 66(3), 904–908. DOI: https://doi.org/10.1128/AEM.66.3.904-908.2000.

Bringhurst, R. M., Cardon, Z. G., & Gage, D. J. (2001). Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proceedings of the National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.071375898.

Carrillo-Castañeda, G., Munoz, J. J., Peralta-Videa, J. R., Gomez, E., & Gardea-Torresdey, J. L. (2005). Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. Journal of Plant Nutrition. DOI: https://doi.org/10.1080/01904160500251340.

Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Screening for Plant Growth–Promoting Rhizobacteria to Promote Early Soybean Growth. Soil Science Society of America Journal, 1670. DOI: https://doi.org/10.2136/sssaj1999.6361670x.

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology.

DOI: https://doi.org/10.1016/j.apsoil.2005.12.002

Corrales, L., Arévalo, Z., & Moreno, V. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 67–79. DOI: https://doi.org/20026743.

Cortés-Jiménez, J. M., Troyo-Diéguez, E., Murillo-Amador, B., García-Hernández, J. L., Garatuza-Payán, J., & Suh Lee, S. (2009). Índices de calidad del agua del acuífero del Valle del Yaqui, Sonora. Terra Latinoamericana, 27(2), 133–141. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792009000200006&lng=es&nrm=iso&tlng=es.

Dary, M., Chamber-Pérez, M. A., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials. DOI: https://doi.org/10.1016/j.jhazmat.2009.12.035.

de los Santos-Villalobos, S. (2018). Colección de microorganismos edáficos y endófitos nativos para contribuir a la seguridad alimentaria nacional Introducción, 191–202.

de los Santos-Villalobos, S., Barrera-Galicia, G. C., Miranda-Salcedo, M. A., & Peña-Cabriales, J. J. (2012). Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology. DOI: https://doi.org/10.1007/s11274-012-1071-9.

de los Santos-Villalobos, S., de Folter, S., Délano-Frier, J. P., Gómez-Lim, M. A., Guzmán-Ortiz, D. A., & Peña-Cabriales, J. J. (2013). Growth Promotion and Flowering Induction in Mango (Mangifera indica L. cv “Ataulfo”) Trees by Burkholderia and Rhizobium Inoculation: Morphometric, Biochemical, and Molecular Events. Journal of Plant Growth Regulation, 32(3), 615–627. DOI: https://doi.org/10.1007/s00344-013-9329-5.

de los Santos Villalobos, S., Robles, R., Parra Cota, F., Larsen, J., Lozano, P. and Tiedje, J. (2019). Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International Journal of Systematic and Evolutionary Microbiology.

de Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. DOI: https://doi.org/10.1590/S1415-475738420150053.

Egamberdiyeva, D., & Höflich, G. (2004). Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. Journal of Arid Environments, 56(2), 293–301. DOI: https://doi.org/10.1016/S0140-1963(03)00050-8.

Eiteman, M.A. et al. (2008) A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2, 3.

Ghosh, D., Gupta, A., & Mohapatra, S. (2019). Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis. DOI: https://doi.org/10.1007/s13199-018-00589-w.

Glickmann, E., & Dessaux, Y. (1995). A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Applied And Environmental Microbiology (Vol. 61). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388360/pdf/hw0793.pdf

Godfray H.C.J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. & Toulmin, C. (2010). The Challenge of Food Security. Science, 5967(January), 812–818. DOI: https://doi.org/10.1126/science.1185383.

Govindasamy, V., Senthilkumar, M., Mageshwaran, V., & Annapurna, K. (2009). Detection and Characterization of ACC Deaminase in Plant Growth Promoting Rhizobacteria. Journal of Plant Biochemistry and Biotechnology, 18(1), 71–76. DOI: https://doi.org/10.1007/BF03263298.

Grahmann, K., Dittert, K., Verhulst, N., Govaerts, B., & Buerkert, A. (2019). 15 N Fertilizer recovery in different tillage–straw systems on a Vertisol in north‐west Mexico. Soil Use and Management, sum.12495. DOI: https://doi.org/10.1111/sum.12495.

Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412. DOI: https://doi.org/10.1016/j.soilbio.2004.08.030.

Grobelak, A., Napora, A., & Kacprzak, M. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22–28. DOI: https://doi.org/10.1016/j.ecoleng.2015.07.019.

Guzmán, A., Obando, M., Rivera, D., & Bonilla, R. (2012). Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). (Spanish). Rev. Colomb. Biotecnol., 14(1), 182–190. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=85945255〈=es&site=ehost-live

He, Y., Wu, Z., Tu, L., & Shan, C. (2017). Effect of encapsulated Pseudomonas putida Rs-198 strain on alleviating salt stress of cotton. Journal of Plant Nutrition, 40(8), 1180–1189. DOI: https://doi.org/10.1080/01904167.2016.1264595.

Heyrman, J., De Vos, P., & Logan, N. (2011). Genus XIX. Virgibacillus. (W. B. W. Paul Vos, George Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer, Ed.), Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes (2nd ed., Vol. 5). Springer Science & Business Media. Retrieved from http://moscow.sci-hub.bz/2f9a77368ec03cf6b24aeba25c820745/10.1007%40978-0-387-68489-5.pdf

Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology. DOI: https://doi.org/10.1099/00221287-148-7-2097.

Jorquera, M. A., Hernández, M. T., Rengel, Z., Marschner, P., & De La Luz Mora, M. (2008). Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils. DOI: https://doi.org/10.1007/s00374-008-0288-0.

Joseph, B., Patra, R. R., & Lawrence, R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production.

Keller, L. and Surette, M.G. (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258.

Khalid, A., Arshad, M., Zahir, Z. A., & Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. The Society for Applied Microbiology Journal of Applied Microbiology, 96, 473–480. DOI: https://doi.org/10.1046/j.1365-2672.2003.02161.x

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substittutions through comparative studies of nucleotide sequences. J. Mol. Evol, 16(1330), 111–120. DOI: https://doi.org/10.1007/BF01731581.

Kloepper, J. W., Reddy, M. S., Rodriguez-Kabana, R., Kenney, D. S., Kokalis-Burelle, N., Martinez-Ochoa, N., & Vavrina, C. S. (2004). Application for rhizobacteria in transplant production and yield enhancement. In Acta Horticulturae. DOI: https://doi.org/10.17660/ActaHortic.2004.631.28.

Kumar, V., Singh, P., Jorquera, M. A., Sangwan, P., Kumar, P., Verma, A. K., & Agrawal, S. (2013). Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World Journal of Microbiology and Biotechnology. DOI: https://doi.org/10.1007/s11274-013-1299-z

LaPara, T.M., Zakharova, T., Nakatsu, C. H. & Konopka, A. (2002) Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation. Microb. Ecol. 44, 317–326.

Lynd, L.R., Weimer, P.J., van Zyl, W.H. & Pretorius, I.S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.

Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in microbiology, 6, 198. https://doi.org/10.3389/fmicb.2015.00198.

Malboobi, M. A., Behbahani, M., Madani, H., Owlia, P., Deljou, A., Yakhchali, B., Moradi, M. & Hassanabadi, H. (2009). Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World Journal of Microbiology and Biotechnology. DOI: https://doi.org/10.1007/s11274-009-0038-y

Marra, L. M., Oliveira, S. M. de, Soares, C. R. F. S., & Moreira, F. M. de S. (2013). Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Scientia Agricola. DOI: https://doi.org/10.1590/s0103-90162011000500015.

Martínez-Viveros, O., Jorquera, M. ., Crowley, D. ., Gajardo, G., & Mora, M. . (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition. DOI: https://doi.org/10.4067/S0718-95162010000100006.

Matson, P., & Jewett, P. (2013). Ecosystems and land-use change in the Yaqui Valley: Does agricultural intensification spare land for nature? In Seeds of Sustainability: Lessons from the Birthplace of the Green Revolution. DOI: https://doi.org/10.5822/978-1-61091-177-1_4

Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., … AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research. DOI: https://doi.org/10.1016/j.micres.2018.02.003.

Nyambura Ngamau, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research. DOI: https://doi.org/10.5897/AJMR12.1170.

Onyia, C. E., & Anyanwu, C. U. (2013). Journal of Yeast and Fungal Research Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil, 4(5), 52–57. DOI: https://doi.org/10.5897/JYFR2013.0120.

Paredes, M. M., & Espinosa, V. D. (2010). Ácidos Orgánicos Producidos por Rizobacterias que Solubilizan Fosfato: Una Revisión Crítica. Terra Latinoamericana.

Patel, P. R., Shaikh, · S S, & Sayyed, · R Z. (2018). Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environmental Sustainability, 1, 81–87. DOI: https://doi.org/10.1007/s42398-018-0005-3

Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologia. DOI: https://doi.org/10.1016/S0028-3932(98)00075-X.

Poudel, R., & Bhatta, M. (2017). Review of Nutraceuticals and Functional Properties of Whole Wheat. Journal of Nutrition & Food Sciences, 07(01), 1–6. DOI: https://doi.org/10.4172/2155-9600.1000571.

Richardson, A. E., & Simpson, R. J. (2011). Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. PLANT PHYSIOLOGY. DOI: https://doi.org/10.1104/pp.111.175448.

Robertson, G. P., & Groffman, P. M. (2015). Chapter 14: Nitrogen Transformations. Soil Microbiology, Ecology and Biochemistry. DOI: https://doi.org/10.1016/B978-0-12-415955-6.00014-1.

Robles-Montoya, R. I., Parra Cota, F. I., & de los Santos Villalobos, S. (2019). Draft genome sequence of Bacillus megaterium TRQ8, a plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(5). DOI: https://doi.org/10.1007/s13205-019-1726-4.

Sanches-Santos, M., Hungria, M., & Nogueira, M. A. (2017). Production of polyhydroxybutyrate (PHB) and biofilm by Azospirillum brasilense aiming at the development of liquid inoculants with high performance. African Journal of Biotechnology, 16(37), 1855–1862. DOI: https://doi.org/10.5897/ajb2017.16162.

Scagliola, M., Pii, Y., Mimmo, T., Cesco, S., Ricciuti, P., & Crecchio, C. (2016). Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiology and Biochemistry. DOI: https://doi.org/10.1016/j.plaphy.2016.06.002.

Sgroy, V., Cassán, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology. DOI: https://doi.org/10.1007/s00253-009-2116-3

Sheirdil, R. A., Hayat, R., Zhang, X.-X., Abbasi, N. A., Ali, S., Ahmed, M., Khan Khatak, J. Z. & Ahmad, S. (2019). Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability, 11(12), 3361. DOI: https://doi.org/10.3390/su11123361.

Singh, P., Kumar, V., & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology. DOI: https://doi.org/10.1155/2014/426483

Somasegaran, P., and Hoben, H. J. (1994). Handbook for Rhizobia. Methods in

Legume–Rhizobium Technology. Heidelberg, NY: Springer. DOI: 10.1007/978-1-

-8375-8

Sood, G., Kaushal, R., Panwar, G., & Dhiman, M. (2018). Effect of indigenous plant growth-promoting rhizobacteria on wheat (Triticum aestivum L.) productivity and soil nutrients. Communications in Soil Science and Plant Analysis, 00(00), 1–12. DOI: https://doi.org/10.1080/00103624.2018.1556282.

Thilagar, G., Bagyaraj, D. J., Podile, A. R., & Vaikuntapu, P. R. (2018). Bacillus sonorensis, a Novel Plant Growth Promoting Rhizobacterium in Improving Growth, Nutrition and Yield of Chilly (Capsicum annuum L.). Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 88(2), 813–818. DOI: https://doi.org/10.1007/s40011-016-0822-z.

United Nations. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. (W. P. N. ESA/P/WP.241, Ed.). New York: United Nations.

Valenzuela-Aragón, B., Parra-Cota, F. I., Santoyo, G., Arellano-Wattenbarger, G. L., & de los Santos-Villalobos, S. (2018). Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. durum) growth promoting bacteria. Plant and Soil, (December). DOI: https://doi.org/10.1007/s11104-018-03901-1.

Valenzuela-Ruiz, V., Robles-Montoya, R. I., Parra-Cota, F. I., Santoyo, G., del Carmen Orozco-Mosqueda, M., Rodríguez-Ramírez, R., de los Santos-Villalobos, S. (2019). Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(11): 436-442. DOI: 10.1007/s13205-019-1972-5.

Villa-Rodríguez, E., Lugo-Enríquez, C., de los Santos-Villalobos, S., Parra-Cota, F. I., & Figueroa-López, P. (2016). First Report of Cochliobolus sativus Causing Spot Blotch on Durum Wheat (Triticum durum) in The Yaqui Valley, Mexico . Plant Disease, 100(11), 2329. DOI: https://doi.org/10.1094/pdis-05-16-0634-pdn

Villa-Rodriguez, Eber, Parra-Cota, F., Castro-Longoria, E., Lopez-Cervantes, J., & de los Santos-Villalobos, S. (2019). Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control, 132(In press), 135–143. DOI: https://doi.org/10.1016/j.biocontrol.2019.02.012.

Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95–130. DOI: https://doi.org/10.18781/R.MEX.FIT.1706-5.

Vincent, J. M., and Humphrey, B. (1970). Taxonomically significant group antigens

in Rhizobium. J. Gen. Microbiol. 63, 379–382. DOI: 10.1099/00221287-63-3-379.

Wahyudi, A. T., Astuti, R. P., Widyawati, A., Meryandini, A., & Nawangsih, A. A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. Journal of Microbiology and Antimicrobials.

Walia, A., Mehta, P., Chauhan, A., & Shirkot, C. K. (2014). Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 84(1), 145–155. DOI: https://doi.org/10.1007/s40011-013-0189-3.

Won, S.-J., Kwon, J.-H., Kim, D.-H., & Ahn, Y.-S. (2019). The Effect of Bacillus licheniformis MH48 on Control of Foliar Fungal Diseases and Growth Promotion of Camellia oleifera Seedlings in the Coastal Reclaimed Land of Korea. Pathogens. DOI: https://doi.org/10.3390/pathogens8010006.




DOI: https://doi.org/10.21640/ns.v12i24.2136

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, http://novascientia.delasalle.edu.mx/. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.