Effect of two drying methods on the total phenolic compounds, L-DOPA and the antioxidant activity of Vicia faba L.
PDF (Español (España))
XML (Español (España))


compuestos fenólicos
métodos de secado
Vicia faba L.
Mucuna pruriens
actividad antioxidante
periodo de floración
método de Folin-Ciocalteu antioxidants
phenolic compounds
drying methods
Vicia faba L.
Mucuna pruriens
antioxidant activity
flowering period
Folin-Ciocalteu method

How to Cite

Ortiz López, M., Delgado-Alvarado, A., Herrera-Cabrera, B. E., Árevalo-Galarza, M. de L., & Barrera-Rodríguez, A. I. (2019). Effect of two drying methods on the total phenolic compounds, L-DOPA and the antioxidant activity of Vicia faba L. Nova Scientia, 11(23), 198–219. https://doi.org/10.21640/ns.v11i23.2093


L-DOPA is one of the secondary metabolites present in legumes, such as Mucuna pruriens and Vicia faba L., its content can be affected by the method of drying, variety and stage of development of the plant. The objective of this study was to analyze the effect of drying method by stove and lyophilization on the content of total phenolic compounds (TPC), L-DOPA and antioxidant activity in seedling and flower of two varieties of broad bean. Two varieties of broad bean, Diamante and Zac-22, were used as plant material, which were sown under field conditions. Seedlings were obtained at 10, 15 and 20 days after the emergence (DAE), and flowers during the flowering period. The tissues were subjected to two drying methods, by forced air oven at 38 °C and by lyophilization (-80 °C). The content of total phenolic compounds (TPC) was determined by the Folin-Ciocalteu method, and L-DOPA was analyzed by HPLC. The antioxidant activity was determined against the DPPH radical (IC50). The results showed that the drying method affected the concentration of TPC, L-DOPA and antioxidant activity. The highest concentrations of TPC (110.12 mg∙g-1 DM) and L-DOPA (61.08 mg∙g-1 DM) were detected in the samples processed by oven drying. Flowers had the highest content of TPC (142.19 mg∙g-1 DM) and L-DOPA (82.02 mg∙g-1 DM) compared to seedlings. While in the seedlings at 10 DAE had on average the highest concentration of TPC (110.12 mg∙g-1 DM) and L-DOPA (61.08 mg∙g-1 DM). The antioxidant activity was particularly affected by the drying method in the seedlings, but in the flowers, they did not show variation. The drying by stove favored the preservation of the antioxidant activity of the seedlings (IC50, 119.93 μg∙mL-1), with respect to the drying method by lyophilization (IC50, 144.29 μg∙mL-1).

PDF (Español (España))
XML (Español (España))


Afshar, R. K., Chaichi, M. R., Jovini, M. A., Jahanzad, E., & Hashemi, M. (2015). Accumulation of silymarin in milk thistle seeds under drought stress. Planta, 242(3), 539-543. doi: 10.1007/s00425-015-2265-9

Andrews, R. S & Pridham, J. B. (1965). Structure of a dopa glucoside from Vicia faba. Revista Nature, 205(4977), 1213-1214. doi: 10.1038/2051213a0

Apaydin, H., Ertan, S., & Özekmekçi, S. (2000). Broad bean (Vicia faba)—A natural source of L‐dopa—Prolongs “on” periods in patients with Parkinson's disease who have “on–off” fluctuations. Movement disorders: official journal of the Movement Disorder Society, 15(1), 164-166. doi.org/10.1002/1531-8257

Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241. doi: 10.1021/jf020635c

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.

Cardador‐Martínez, A., Maya‐Ocaña, K., Ortiz‐Moreno, A., Herrera‐Cabrera, B. E., Dávila‐Ortiz, G., Múzquiz, M., & Jiménez‐Martínez, C. (2012). Effect of Roasting and Boiling on the Content of Vicine, Convicine and L‐3, 4‐dihydroxyphenylalanine in Vicia faba L. Journal of Food Quality, 35(6), 419-428. doi: 10.1111/jfq.12006

Cenarruzabeitia, M. N., Soria, A. & Larralde, J. (1978). The content of L-DOPA and its precursor L-tyrosine in Vicia faba grown in the north of Navarre. Anales de Edafologia y Agrobiologia 37: 677-681

Chasquibol, N., Lengua, L., Delmás, I., Rivera, D., Bazán, D., Aguirre, R y Bravo, M. (2003). Alimentos funcionales o fitoquímicos, clasificación e importancia. Revista Peruana de Química e Ingeniería Química, 6(2), 9-20.

Chon, S. U. (2013). Total polyphenols and bioactivity of seeds and sprouts in several legumes. Current Pharmaceutical Design, 19(34), 6112-6124. doi: 10.2174/1381612811319340005

Dahouda, M., Toleba, S. S., Youssao, A. K. I., Mama Ali, A. A., Dangou-Sapoho, R. K., Ahounou, S. G., & Hornick, J. L. (2009). The effects of raw and processed Mucuna pruriens seed based diets on the growth parameters and meat characteristics of benin local guinea fowl (Numida meleagris, L.). International Journal of Poultry Science, 8(9), 882-889. doi: 10.3923/ijps.2009.882.889

Devi, K. V, Devi S. K., Shaikh, S. K. (2004). Plant based medications for Parkinsonism. Pharmatimes, 86, 41-45

Dewick, P. M. (2002). Medicinal natural products: a biosynthetic approach. Second Edition By P. M. Dewick (University of Nottingham). John Wiley & Sons. UK. 507 p.

Drago Serrano, M. E., López López, M., & Sainz Espuñes, T. D. R. (2006). Componentes bioactivos de alimentos funcionales de origen vegetal. Revista Mexicana de Ciencias Farmacéuticas, 37(4), 58-68.

Echeverría, G.C.L., & Bressani, R. (2006). Effect of different cooking treatments of Mucuna beans on its L-DOPA content. Archivos Latinoamericanos de Nutrición, 56(2), 175-84.

Ehringer, H., & Hornykiewicz, O. (1998). Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Parkinsonism and Related Disorders, 4(2), 53-57. doi: 10.1016/S1353-8020(98)00012-1

Etemadi, F., Hahsemi, M., Xing, B., & Mashayekhi, H. (2014). Accumulation trend of L-DOPA in different parts of fava beans varieties. In Grand challenges, great solutions. Presentations of the ASA, CSSA, & SSSA Annual Meetings, Long Beach, CA (pp. 2-5).

Etemadi, F., Hashemi, M., Randhir, R., ZandVakili, O., & Ebadi, A. (2018a). Accumulation of L-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on L-DOPA yield. The Crop Journal, 6(4), 426-434. doi:10.1016/j.cj.2017.12.001

Etemadi, F., Hashemi, M., Autio, W., Mangan, F., & Zandvakili, O. (2018b). Accumulation and distribution trend of L-DOPA in different parts of eight varieties of faba bean plant through its growth period. Journal of Crop Science, 6: 426-434.

Etemadi, F., Hashemi, M., Barker, A.V., Zandvakili, O.R., Liu, X. (2019) Agronomy, Nutritional Value, and Medicinal Application of Faba Bean (Vicia faba L.), Horticultural Plant Journal. doi:10.1016/j.hpj.2019.04.004

Foster, B. C., Arnason, J. T., & Briggs, C. J. (2005). Natural health products and drug disposition. Annual Review of Pharmacology and Toxicology, 45, 203-226. doi: 10.1146/annurev.pharmtox.45.120403.095950

Hu, J., Kwon, S. J., Park, J. J., Landry, E., Mattinson, D. S., & Gang, D. R. (2015). LC-MS determination of L-DOPA concentration in the leaf and flower tissues of six faba bean (Vicia faba L.) lines with common and rare flower colors. Functional Foods in Health and Disease, 5(7), 243-250. doi: 10.31989/ffhd.v5i7.199

Hussian, G., & Manyam, B. V. (1997). Mucuna pruriens proves more effective than L‐DOPA in Parkinson's disease animal model. Phytotherapy Research: An International Journal Devoted to Medical and Scientific Research on Plants and Plant Products, 11(6), 419-423.

Jankovic, J. (2002). Levodopa strengths and weaknesses. Neurology, 58(suppl 1), S19-S32.

Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology, 48(4), 412-422.

Kirakosyan, A., Kaufman, P. B., Duke, J. A., Warber, S., & Bolling, S. (2004). The production of L-DOPA and isoflavones in seeds and seedlings of different cultivars of Vicia faba L. (fava bean). Evidence-Based Integrative Medicine, 1(2), 131-135.

Lang, A. & Lozano, A. (1998) Parkinson’s disease: First of two parts. The New England Journal of Medicine, 339, 1044-1053. doi:10.1056/NEJM199810083391506

Lee, Y.L., Jian, S.Y., Lian, P.Y., & Mau, J.L. (2008). Antioxidant properties of extracts from a White mutant of the mushroom Hypsizigus marmoreus. Journal of Food Composition & Analysis, 21, 116-124. doi: 10.1016/j.jfca.2007.09.005

Lewis, W. H., & Elvin-Lewis, M. P. (2003). Medical botany: plants affecting human health. John Wiley & Sons. Consultado en https://books.google.com.mx/books?hl=es&lr=&id=ipQmSriMF9sC&oi=fnd&pg=PR9&ots=4ob3k6DvzA&sig=Alm3N2mh5X6ecWizATQmemDk3aI#v=onepage&q&f=false

Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Science and Technology, 40(9), 1664-1669. doi:10.1016/j.lwt.2006.12.013

Mateos‐Aparicio, I., Redondo‐Cuenca, A., & Villanueva‐Suárez, M. J. (2012). Broad bean and pea by‐products as sources of fibre‐rich ingredients: potential antioxidant activity measured in vitro. Journal of the Science of Food and Agriculture, 92(3), 697-703. doi: 10.1002/jsfa.4633

Mediani, A., Abas, F., Tan, C., & Khatib, A. (2014). Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants, 3(2), 358-370. doi: 10.3390/antiox3020358

Menéndez-González, M., Castro-Santos, P., Suazo Galdames, I. C., & Díaz-Peña, R. (2016) Farmacogenética en la Enfermedad de Parkinson: Influencia de Polimorfismos Genéticos Sobre los Efectos de la Terapia Dopaminérgica. Archivos de Medicina, 12 (3):9. doi: 10.3823/1308

Nagatsu, T., & Sawada, M. (2009). L-Dopa therapy for Parkinson's disease: past, present, and future. Parkinsonism & related disorders, 15, S3-S8. doi.org/10.1016/S1353-8020(09)70004-5

Patil, S. A., Apine, O. A., Surwase, S. N., & Jadhav, J. P. (2013). Biological sources of L-DOPA: An alternative approach. Advances in Parkinson's Disease, 2(03), 81. doi: 10.4236/apd.2013.23016

Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M. E., Serrano, J., Goñi, I., & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41(3), 274–285. doi: 10.1016/j.foodres.2007.12.004

Petkovsek, M. M., Slatnar, A., Stampar, F., & Veberic, R. (2010). The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2‐year period. Journal of the Science of Food and Agriculture, 90(14), 2366-2378. doi: 10.1002/jsfa.4093

Rabey, J.M., Vered, Y., Shabtai, H., Graff, E., & Korczyn, A. D. (1992). Improvement of Parkinsonian features correlate with high plasma levodopa values after broad bean (Vicia faba) consumption. Journal of Neurosurgery and Psychiatry 55, 25-727. doi: 10.1136/jnnp.55.8.725

Ramos, A., Visozo, A., Piloto, J., García, A., Rodríguez, C.A., & Rivero, R. (2003). Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. Journal of Ethnopharmacology, 87, 241-246.

Randhir, R., & Shetty, K. (2004). Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson’s diet. Process Biochemistry, 39(11), 1775-1784. doi: 10.1016/j.procbio.2003.08.006

SAS (Statistical Analysis Systems). (2002). SAS/STAT Users guide, version 9. SAS Institute Inc., North Carolina 14.

Shetty, P., Atallah, M. T., & Shetty, K. (2001). Enhancement of total phenolic, L-DOPA and proline contents in germinating fava bean (Vicia faba) in response to bacterial elicitors. Food Biotechnology, 15(1), 47-67.

Shetty, K. (1997). Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae. Asia Pacific Journal of Clinical Nutrition, 6(3), 162-171

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Siqueira-Soares, R. D. C., Soares, A. R., Parizotto, A. V., Ferrarese, M. D. L. L., & Ferrarese-Filho, O. (2013). Root growth and enzymes related to the lignification of maize seedlings exposed to the allelochemical L-DOPA. The Scientific World Journal, 2013.

St Laurent, L., Livesey J., Arnason J. T. & Bruneau A. (2000). Variation in L-dopa concentration in accessions of Mucuna pruriens (L.) DC var. utilis (Wall. ex Wight) Baker ex Burck. and in Mucuna brachycarpa Rech. In: Flores, B.M., Eilitta, M., Myhrman, R., Carew, L.B., Carsky, R.J. (ed.): Food and Feed from Mucuna: Current Uses and the Way Forward. Pp. 252–375. CIDICCO, CIEPCA and World Hunger Research Centre, Tegucigalpa.

Turco, I., Ferretti, G., & Bacchetti, T. (2016) Review of the health benefits of Faba bean (Vicia faba L.) polyphenols. Journal of Food and Nutrition Research, 55 (4), 283–293

Vered, Y., Grosskopf, I., Palevitch, D., Harsat, A., Charach, G., Weintraub, M. S., & Graff, E. (1997). The influence of Vicia faba (broad bean) seedlings on urinary sodium excretion. Planta Medica, 63(03), 237-240.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Nova Scientia