In vitro analysis of the accumulation of heavy metals in plants of the family Asparagaceae tolerant to low water availability
PDF (Español (España))
XML (Español (España))


metales pesados
propagación in vitro
suelo contaminado
contaminación minera
contaminación por metales pesados
Asparagaceae Agave
heavy metals
in vitro propagation
contaminated soil
mining pollution
pollution by heavy metals

How to Cite

Perales Aguilar, L., Santos Díaz, M. del S., Gómez Aguirre, Y. A., Ramos Gómez, M. S., & Perez Molphe Balch, E. (2020). In vitro analysis of the accumulation of heavy metals in plants of the family Asparagaceae tolerant to low water availability. Nova Scientia, 12(24).


Introduction: The Asparagaceae family includes several genera adapted to survive at high temperatures and with low water availability. These include Agave, Beaucarnea, Dasylirion, Nolina and Yucca. Mexico has a great biodiversity in these plant groups, as well as an ancestral tradition regarding its use. In vitro propagation systems are efficient for the production of these plants and can be used to perform various types of studies. Among these are the studies of tolerance to heavy metals, which can serve to determine which species are suitable for reforestation and regeneration of areas contaminated by mining activities.

Method: In this work, 20 species of the family Asparagaceae were propagated in vitro and their rooting process was evaluated in culture media added with Cd, Cu, Cr, Fe, Mn, Pb and Zn. The development of roots in the presence of these metals was analyzed and its absorption capacity was determined by flame atomic absorption spectrophotometry. With these data, translocation and bioaccumulation factors were calculated in order to characterize the response of each species to heavy metals.

Results: The highest number of shoots occurred in the species Beaucarnea recurvata, which generated 5.7 shoots per explant and Nolina durangensis with 5.6. Chromium treatment was toxic for most species. Agave celsii, A. chiapensis, A. obscura, A. palmeri and A. salmiana formed roots in all treatments. According to translocation and bioaccumulation factors, the analyzed species were classified as phytostabilizers, exclusors, bioaccumulators and indicators. The species A. chiapensis, A. obscura and A. palmeri were bioaccumulators for Mn. A. celsii and A. salmiana presented mechanisms of phytostabilization and exclusion.

Conclusion: In vitro propagation allows to work and study a wide range of species in the presence of contaminants. The Agave genus is tolerant to metals and can be used to phytostabilize and remediate contaminated soils.
PDF (Español (España))
XML (Español (España))


Alipur H., Zare M. y Shojaeir S. (2016). Assessing the degradation of vegetation of arid zones using FAO-UNIP model (Case study: Kashan zone). Model Earth Systems Environment. 2:195.

Ashrafzadeh, S. y Leung D. M. W. (2015). In Vitro breeding of heavy metal-resistant plants: A review. Horticulture, Environment and Biotechnololgy. 56(2):131-136.

Ayari, F., Hamdi, H., Jedidi, N., Gharbi, N. y Kossai, R. (2010). Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. International Journal of Environmental Science and Technology. 7(3): 465-472.

Baker, A.J.M. y Brooks, R.R. (1989). Terrestrial Higher Plants which Hyperaccumulate Metallic Elements: A Review of their Distribution, Ecology and Phytochemistry. Biorecovery 1: 81-126.

Beltrán, M. E. y Gómez A. M. (2015). Metales pesados (Cd, Cr y Hg): Su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación. Revista I3+. 2(2):82-112.

Bran, D. y Gaitán, J. (2012). La verdadera riqueza de las zonas secas. Actualidad en 1+D. RIA. 30(3):218-224.

Chang, K. J., Gonzales, M. J., Ponce O., Ramírez L., León, V., Torres, A., Corpus, M. y Loayza-Muro, R. (2018). Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Environmetnal Science and Pollution Research. 25:33957–33966.

Couselo J. L., Corredoira E., Vieitez, A. M. y Ballester, A. (2010). Aplicación del cutilvo in vitro de tejidos vegetales en estudios de fitorremediación. Revista Real Academia Galega de Ciencias. 21:77-87.

Di Lonardo S., Capuana M., Arnetoli, M., Gabrielli, R. y Gonnelli, C. (2011). Exploring the metal phytoremediation potential of three Populus alba L. clones usign an in vitro screening. Environmental Science and Pollution Research. 18:82-90.

Domínguez-Rosales, M.S., González-Jiménez, M.L., Rosales-Gómez, C., Quiñones- Valles, C., Delgadillo-Díaz de León, S., Mireles-Ordaz, S.J., Pérez Molphe Balch, E. (2008). El cultivo in vitro como herramienta para el aprovechamiento, mejoramiento y conservación de especies del género Agave. Investigación y Ciencia. 41:53-62. DOI:

Du Fan, Yang Zhaoguang, Liu Peng y Wang Lin. (2018). Accumulation, translocation, and assessment of heavy metals in the soil-rice systems near a mine-impacted region. Environmental Science and Pollution Research. 25:32221-32230.

Eguiarte Luis E., Aguirre-Planter Erika, Aguirre Xitlali, Colín Ricardo, González Andrea, Rocha Martha, Scheinvar Enrique, Trejo Laura y Souza Valeria. (2013) From isozymes to genomics: Population genetics and conservation of Agave in México. The Botanical Review. 79:483-506.

Encina-Domínguez Juan A., Meave, Jorge A., y Zárate-Lupercio A. (2013). Structure and woody species diversity of the Dasylirion cedrosanum (Nolinaceae) Rosette scrub of central and southern Coahuila State, Mexico. Botanical Sciences. 91(3):335-347.

Fait Sofia, Fakhi Said, ElMzibri Mohammed, Malek Omar A., Rachdi Bouchra, Faiz Zineb, Fograch Hassan, Badri Wadia, Smouni Abdelaziz y Fahr Mouna. (2018). Behavior of as, cd, co, cr, cu, pb, ni, and zn at the soil/plant interface around an uncontrolled landfill (casablanca, morocco). Remediation Journal, 28(4):65-72. 10.1002/rem.21577.

Fernández M. Roció, Albornoz Carolina B., Larsen Karen y Najle Roberto. (2018). Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediaton potential in water contaminated with heavy metals. Environmental Earth Sciences. 77:404.

Fu Shuai, Wei Chaoyang, Xiao Yuan, Li Lanhai y Wu Daishe. (2019). Heavy metals uptake and transport by native wild plants: implications for phytoremediation and restoration. Environmental Earth Sciences. 78:103.

García, A. J., Cházaro, M. J., Nieto, J., Sánchez, L. F., Tapia, E., Gómez, J. F., Tamayo, M., Naráez, J. A., Rodríguez, B., Palomino, G. A., Martínez, L., Martínez, J. C., Quiñones, E. E., Rincón, G., Beltran, M. J., Quí, J. A., Guzmán, R., Mercado, Y., Ragazzi, J. A., Calderón, M. y A. Gutiérrez. 2017. Panorama del aprovechamiento de los agaves en México. Capitulo 1. Agave. Agared. México.

Gatti, E. (2008). Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. Biologia Plantarum. 52(1): 146-148.

Hu Zhigang, Wang Chensheng, Li Keqing y Zhu Xinyou. (2018). Distribution characteristics and pollution assessment of soil heavy metals over a typical nonferrous metal mine area in Chifeng, Inner Mongolia, China. Environmental Earth Sciences. 77(638):1-10.

López-Ramírez Y., Palomeque-Carlín A., Chávez Ortiz L.I., de la Rosa-Carrillo M..L., Pérez-Molphe-Balch E. (2018). Micropropagation of Yucca Species. In: Loyola-Vargas V., Ochoa-Alejo N. (eds) Plant Cell Culture Protocols, Fourth edition. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. pp.

Lu, Y., Li, X., He, M., Zeng, F., & Li, X. (2017). Accumulation of heavy metals in native plants growing on mining-influenced sites in Jinchang: a typical industrial city (China). Environmental Earth Sciences, 76:446. DOI:

Magallán-Hernández, F., Maruri-Aguilar, B., Sánchez-Martínez, E., Hernández Sandoval, L., Luna-Zúñiga, J. y Robledo-Mejía M. (2014). Consideraciones taxonómicas de Yucca queretaroensis, Piña (Agavaceae), una especie endémica del semidesierto Queretano-Hidalguense. Acta Botánica Mexicana. 108:51-66.

Méndez-Hurtado, A., Rangel-Méndez, R., Yáñez-Espinosa, L. y Flores, J. (2013). Tolerance to cadmium of agave lechuguilla (agavaceae) seeds and seedlings from sites contaminated with heavy metals. The Scientific World Journal. 1-11. 167834-167834. doi:10.1155/2013/167834

Mendieta Bras, C. y Taisigüe, K. (2014). Acumulación y traslocación de metales, metaloides y no metales en plantas nativas de la zona minera de Chontales: Implicaciones para el potencial de fito-remediación. Austrina partnership programme in higher education and research for developmen. 1-12.

Memon, A.R., Aktoprakligíl, D., Özdemir, A., & Vertii, A. (2001). Heavy Metal Accumulation and Detoxification Mechanisms in Plants. Turkish Journal of Botany 25:111-121.

Morales-Rubio María E., Espinosa-Leal Claudia A. y Garza-Padrón Ruth A. (2016). Cultivo de tejidos vegetales y su aplicación en productos naturales. OmniaScience. 351-410.

Murashige Toshio y Skoog Folke. (1962). A revised medium for rapid growth an bio assays with tobacco tissue cultures. Physiologia Plantarum. 15: 473-497.

Navarro José A., Goberna, Marta González, Gonzalo Castillo, Víctor M. y Verdú Miguel. (2017). Restauración ecológica en ambientes semiáridos recuperar las interacciones biológicas y las funciones ecosistémicas. CSIC. España. 159 pp.

Nirola Ramkrishna, Megharaj Mallavarapu, Beecham Simon, Aryal Rupak, Thavamani Palanisami, Vankateswarlu Kadiyala y Saint Christopher. (2016). Remediaton of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Environmental Science and Pollution Research. 23:20131-20150.

Ouyang HuiLing, Kong XiangZhen, He Wei, Qin Ning, He QiShuang, Wang Yan, Wang Rong y Xu Fuliu. (2012). Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Environmental Chemistry. Chinese Science Bulletin. 57(25):3363-3370.

Peláez Manuel, Casierra-Posada Fanor y Torres Gerardo A. (2014). Tóxidad de cadmio y plomo en pasto tanner Brachiaria arrecta. Revista de Ciencias Agrícolas. 31(2):3-13.

Perveen, S. y Anis, M. (2012). In vitro morphogenic response and metal accumulation in Albizia lebbeck L. cultures grown under metal stress. European Journal Forest Research 131:669-681.

Ramana Sivakoti, Srivastava Sanjay, Biswas, Ashis K., Kumar Ajay, Singh Amar B., Singh Das rath y Rajput Poonam S. (2016). Assessment of century plant (agave americana) for remediation of chromium contaminated soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(4), 1159-1165.10.1007/s40011-015-0685-8

Reyes-Silva, A.I., Morales-Muñoz, C.F., Pérez-Reyes, M.E., Pérez-Molphe-Balch, E. (2013). Propagación in vitro de nolináceas mexicanas. Investigación y Ciencia 58:12-20.

Singh A., Prasad S. M. y Singh R. P. (2016). Plant Responses to Xenobiotics. Springer. 362.

Solanki, R. y Dhankhar R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia. Section Botany. 66(2): 195-204.

Srivastava, N. (2016). Phytoremediation. Chapter 13. Role of phytochelatins in phytoremediation of heavy metals contaminated soils. Springer International Publishing Switzerland. 393-419 pp.

Sruthi Palliyath, Shackira Abdul M. y Puthur Jos T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview.Wetlands Ecology and Management. 25:129-148.

Tosié, S., Alagié, S., Dimitrijevié, M., Pavlovié, A., & Nujkié, M. (2016). Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio. 45:501-512. DOI:

Wiszniewska A., Hanus-Fajerska E., Muszyńska E. y Smoleń S. (2017). Comparative assessment of response to cadmium in heavy metal-tolerant shrubs cultured in vitro. Water Air and Soil Pollution. 228: 304.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia