Simulation of wave propagation in the cochlea

Edgar Alvarado-Anell, Sagrario Santillán-Flores

Abstract


We present some solutions of the Burgers´s equation as a mathematical model to describe the propagation of waves of the perilymph within the cochlea. We propose different initial conditions which model the effect of the stapes in the perilymph through the oval window, which produces wave motion in the liquid. We show the simulations obtained from the solutions mentioned using mathematica and compared with images that are reported in the literature.

Keywords


mathematical model; tympanic membrane; ossicular chain; simulation

References


Drescher J., Schmidt R. and Hardtke H.J., Finite element modeling and simulation of the human tympanic membrane. HNO. 46 (1998) pp 129-134.

Funnell W.R. Low-frequency coupling between eardrum and manubrium in a finite-element model. J. Acoust. Soc. Am. 99 (1996) pp 3036-3043.

Alvarado-anell E., Sosa M. and Moreles M.A., Numerical simlation of the dynamical properties of the human tympanum. Revista mexicana de física I54(2) 2008 135-140.

Alvarado-anell E., Sosa M. and Moreles M.A., Computacional study of forced oscillations in a membrane. Revista mexicana de física E51(2) 2005 102-107.

Gilad P, Shtrikman S, Hillman P (1967). Application of the Mössbauer Method to ear Vibrations. J Acoust Soc Am. 41(5):1232-1236.

Khanna S M, Tonndorf J (1972). Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am. 51(6):1904-20.

Tonndorf J, S M Khanna (1968). Submicroscopic Displacement Amplitudes of the Tympanic Membrane (Cat) Measured by a Laser Interferometer. J Acoust Soc Am. 44(6):1546-54.

Wilson JP and Johnstone JR (1975). Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. Hearing Theory, IPO Eindhoven.

Rutten WLC, Peters MJ, Brenkman CJ, Mol h, Grote JJ, van der Marel LC (1982). The use of a SQUID magnetometer for middle ear research. Cryogenics September 1982.

Brenkman CJ, Grote JJ, Rutten WLC (1987). Middle ear transfer characteristics by a SQUID magnetometer. J Acoust Soc Am. 82(5):1646-54.

Sosa M, Carneiro AAO, Colafemina JF, Baffa O (2001). A new magnetic probe to study the vibration of the tympanic membrane. J Magn Magn Materials. 226:2067-9.

Sosa M, Carneiro AAO, Baffa O, Colafemina JF (2002). Human ear tympanum oscillation recorded using a magnetoresistive sensor. Rev Sci Instr. 73(10):3695-7.

D.T. Kemp. Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. European Archives of Oto-Rhino-Laryngology. Vol 224, Numbers 1-2, 37-45 (1979).

T. Duke and F. Julicher. Active traveling wave in the cochlea. Phys. Rev. Lett. 90, 158101 (2003).

Scherer M.P. and Gummer A.W. Vibration pattern of the organ of Corti up to 50 kHz: Evidence for resonant electromechanical force. PNAS vol. 101, no. 51, 17652-17657. (2004)

D. Manoussaki, E.K. Dimitriadis and R.S. Chadwick. Cochlea´s graded curvature effect on low frequency waves. Phys. Rev. Lett. 96, 088701 (2006).

Y. Zhang, C.K. Kim, K.J.B. Lee and Y Park. Resultant pressure distribution pattern along the Basilar Membrane in the spiral shaped Cochlea. Journal of Biological Physics. Vol 33, 3, 195-211 (2007).

Fridberger A. et al. Organ of Corti Potencials and Motion of the Basilar Membrane. The Journal of Neuroscience. 2004, 24(45), 10057-10063.

Polyanin, A.D. and Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equation. Chapman & Hall/CRC. 2004.

Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhauser USA. 2005.

Abramowitz M. and Stegun I.A. Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables. Dover Publications, Inc. New York. 1964.

Enns R.H. and McGuire G.C. Nonlinear Physics with Mathematica for Scientists and Engineers. Birkhauser USA. 2001.




DOI: https://doi.org/10.21640/ns.v3i5.200

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 11, issue 23, November 2019 – April 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, http://novascientia.delasalle.edu.mx/. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 30th, 2019.