Robustness vs Chattering-effect study for the Sliding Mode Control

Sergio Álvarez Rodríguez

Abstract


In Sliding Modes control literature, a popular paradigm says that the so called “chattering-effect” (undesirable mechanical vibrations on the plant under control) can be reduced or even removed at all without affecting the control robustness. Nevertheless, results of practical implementations support that this is not necessarily true. In this work, the actual behaviour of a class of high order Sliding Modes used as the control law for a Multiple-Input Multiple-Output system is presented, where the real performance of system robustness is studied when the chattering-effect change in magnitude. In this study, to achieve the chattering reduction, the Super-Twisting algorithm is used, and the plant to control is a 3-DoF robot arm. The results of this work show that when techniques to reduce the chattering-effect are utilized, the corresponding reduction in system robustness should also be taken into account, and that achievements of theoretical concepts must be bounded when they are implemented in practical applications.


Keywords


Super-Twisting algorithm; chattering-effect; system robustness; 3-DoF robot arm; Sliding Modes; control law; undesirable mechanical vibrations

Full Text:

PDF XML

References


Álvarez Rodríguez, S., & Castañeda Hernández, C. E. (2015). A dual neural network as an identifier for a 3-DoF robot arm, International Journal of Advanced Robotic Systems, 12:40. DOI: 10.5772/58760.

Álvarez Rodríguez, S., Castañeda Hernández, C. E., Jurado, F., Morfín, O., & Esquivel, P. (2015). Real-time results for high order neural identification and block control transformation form using high order sliding modes, Asian Journal of Control, Vol. 18, No. 3, pp. 1-17. Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/asjc.1139.

Bartolini, G. (1989). Chattering phenomena in discontinuous control systems, Int. J. Systems Sci., vol. 20, pp. 2471-2481.

Bartolini, G., Ferrara, A., & Usani, E. (2002). Chattering avoidance by second-order sliding mode control, IEEE Transactions on Automatic Control, vol. 43-2, pp. 241-246.

Boiko, I., & Fridman, L. (2005). Analysis of chattering in continuous sliding mode controllers, IEEE Transactions on Automatic Control, 2012, vol. 50, no. 9, pp. 1442-1446.

Dorel, L., & Levant, A. (2008). On Chattering-Free, Proceedings of the 47th IEEE Conference on Decision and Control, Cancún, México.

Fridman, L. (2001). An averaging approach to chattering, IEEE Transactions on Automatic Control, vol. 46, pp.1260-1264.

Fridman, L., Moreno, J., & Iriarte, R. (2011). Sliding Modes after the First Decade of the 21st Century. State of the Art. Springer-Verlag, Berlin Heidelbert.

Furuta, K., & Pan, Y. (2000). Variable structure control with sliding sector, Automatica, vol. 36, pp. 211-228.

Furuta, K., & Pan, Y. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, vol. 76-9, pp. 924-941.

Isidori, A. (1989). Nonlinear Control Systems Springer-Verlag, Berlin Heidelberg, New York. pp. 8, 137-185. 3-th edition.

Khalil, H. (2001). Nonlinear Systems, Prentice Hall, third edition.

Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control, International Journal of Control, vol. 58, No. 6, pp 1247- 1263.

Levant, A. (2013). Advances in sliding mode control, Chapter 5: Practical Relative Degree Approach in Sliding-Mode Control, Springer-Verlag Berlin Heidelberg, pp 97-115.

Loukianov, A. G., Rivera, J., & Cañedo, J. M. (2002). Discrete-time sliding mode control of an induction motor, Proceedings of the 15th IFAC World Congress, Barcelona, Spain.

Morfín, O. (2009). Control por modos deslizantes integrales y de segundo orden del generador de inducción de rotor devanado en tiempo real, Instituto Politécnico Nacional, México, pp. 40.

Qu, Z., & Dawson, D. M. (1995). Robust tracking control of robot manipulators. IEEE press Piscataway, NJ, USA.

Sira-Ramírez, H. (2002). Dynamic Second-Order Sliding Mode Control of the Hovercraft Vessel, IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 860-865.

Spong, W. S., & Vidyasagar, M. (1989). Robot Dynamics and Control, John Wiley and Sons, New York, N.Y., USA.

Utkin, V., Guldner, J., & Shi, J. (1999). Sliding Mode Control in Electromechanical Systems, CRC Press, New York, N.Y., USA, pp. 1.




DOI: https://doi.org/10.21640/ns.v11i23.1972

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 11, issue 23, November 2019 – April 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, http://novascientia.delasalle.edu.mx/. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 30th, 2019.