Phenomenological survey on the potential profile evolution in III-V binary compounds
PDF (Español (España))

Keywords

Quadratic eigenvalue problem
dispersing potential profile Problema cuadrático de autovalores
perfil del potencial dispersor

How to Cite

Mendoza Álvarez, A., Fernández Anaya, G., Flores-Godoy, J. J., & Diago-Cisneros, L. (2014). Phenomenological survey on the potential profile evolution in III-V binary compounds. Nova Scientia, 3(6), 47–67. https://doi.org/10.21640/ns.v3i6.187

Abstract

In this paper we present the change in the effective potential profile of some compounds when the bandmixing of light and heavy holes is altered. We obtained this by applying Generalized Shur's Theorem to an eigenvalue quadratic problem obtained from a system with N second order coupled equations in the context of multiband effective mass approximation. We considered incident energy values that were lower, equal, and higher than the height of the dispersive Mendoza, A. et al. Revista Electrónica Nova Scientia, Nº 6 Vol. 3 (2), 2011. ISSN 2007 - 0705. pp: 47 - 67 - 49 - potential barrier for different III-V semiconductor binary compounds. Most of the standard properties of the binary compounds in this study were guaranteed; but not all of the materials we chose, have shown the evolution we expected in their effective potential profile: some of the ones that constitute quantum wells (QW) in technological applications only evolve into effective barrier (B) behaviors for light holes (lh) when they are in different incident energy (E) ranges and present different bandmixing. None of the barrier constituting compounds for technological applications in this study evolves into effective QW behaviors valid for both lh and hh. Surprisingly enough, all of the compounds in this study that constitute standard barriers in technological applications, present transitions from QW to B for lh in the range where the value of E is higher than the height of the barrier.
https://doi.org/10.21640/ns.v3i6.187
PDF (Español (España))

References

M. G. Burt, J. Phys. Condens. Matter 4, 964 (1992).

B. A. Foreman, Phys. Rev. B 48, 4964 (1993).

L. Diago-Cisneros, H. Rodríguez-Coppola, R. Pérez-Álvarez, and P. Pereyra, Phys. Rev. B 74, 045308 (2006).

L. Diago-Cisneros, G. Fernández-Anaya and G. Bonfanti-Escalera, Phys. Scr. 78, 035004 (2008).

Neal H. McCoy, Bull. Amer. Math. Soc., 42:592, 600 (1936).

C. B. Moler and G. W. Stewart, SIAM J. Numer. Anal. 10, 241 (1973).

M. Haardt, K. HÄuper, J. Moore and J. Nossek, Proceedings of EUSIPCO-96", (Trieste, Italy,1996) vol.1, pp.531- 534.

M. Haard and J. A. Nossek, IEEE 46, 161 (1998).

L. de Lathauwer, B. de Moore, and J. Vandewalle, SIAM J. Matrix Anal. Appl. 26, 295 (2004).

A. M. Malik, M. J. Godfrey and P. Dawson, Phys. Rev. B 59, 2861 (1999).

R. Pérez-Álvarez, C. Trallero-Herrero and F. García-Moliner, European Journal of Physics 22, 275 (2001).

L. Diago-Cisneros, H. Rodríguez-Coppola, R. Pérez-Álvarez, P. Pereyra, arXiv:cond- mat/0410159v1, 6 Oct (2004).

F. Tisseur and K. Meerbergen, SIAM Review 43, 235 (2001).

D. A. Broido and L. J. Sham, Phys. Rev. B 31, 888 (1985).

L. C. Andreani, A. Pasquarello and F. Bassani, Phys. Rev. B 36, 5887 (1987).

E. P. O'Reilly and G. P. Witchlow, Phys. Rev. B 34, 6030 (1986).

G. Schechter, L. D. Shvartsman and J.E. Golub, J. Appl. Phys. 78, 288 (1995).

S. S. Nedorezov, Fiz. Tverd. Tela 12, 2269 (1970) [Sov. Phys. Solid State 12, 1814 (1971)].

J. N. Schulman and Yia-Chung Chang, Phys. Rev. B 31, 2056 (1985).

Yia-Chung Chang and J. N. Schulman, Phys. Rev. B 31, 2069 (1985).

U. Ekenberg, L. C. Andreani and A. Pasquarello, Phys. Rev. B 46, 2625 (1992).

Z. Ikonic and V. Milanovic, Phys. Rev. B 45, 8760 (1992).

Z. Ikonic, V. Milanovic and D. Tjapkin, Phys. Rev. B 46, 4285 (1992).

A. D. Sánchez and C. R. Proetto, J. Phys. Condens. Matter 7, 2059 (1995).

G. Goldoni and A. Fasolino, Phys. Rev. B 51, 9903 (1995).

L. Diago-Cisneros, H. Rodríguez-Coppola and R. Pérez-Alvarez, Rev. Mex. Fis. 46, 337 (2000).

G. Goldoni and A. Fasolino, Phys. Rev. Lett. 69, 2567 (1992).

G. Goldoni and A. Fasolino, Surf. Sci. 305, 333 (1994).

P. Lancaster, "Lambda-Matrices and Vibrating Systems" (Editorial Pergamon Press, Oxford, UK), 1966.

I. Gohberg, P. Lancaster y L. Rodman, "Matrix Polynomials" (Editorial Academic Press, New York), 1982.

R. Tsu and L. Esaki, Apppl. Phys. Lett. 22, 562 (1973)

P.A. Mello, P. Pereyra, and N. Kumar, Ann. Phys.181,290 (1988)

P. Pereyra, Phys. Rev. Lett.80, 2677 (1998)

M. C. Payne, J. Phys. C 19, 1145 (1986)

P. Weetman and M.S. Wartaka, J. Appl. Phys. 93, 9562 (2003)

M. Nido, M.G. Alexander , W.W. Rühle, and K. K?hler, Phys. Rev. B 43, 1839 (1991).

L. Kadanof et al, , Phys. Rev. B 42, 7065 (1990)

R. Wessel and M. Altarelli, Phys. Rev. B 39, 12802 (1989).

V. Milanovic, and D. Tjapkin, Phys. Stat. Sol(b) 110, 685 (1988).

Rolando Pérez-Álvarez and Federico García-Moliner, Transfer Matrix, Green Function and related techniques: Tools for the study of multilayer heterostructures, (ed. Universitat Jaume I, Castellón de la Plana, España), 2004.

I. Vurga man, J. R. Mayer, and L. R. Ram-Moham, J. App. Phys 89:11, 5815 (2001).

G.H. Golub and C.F. van Loau, Matrix Computations, Oojns Hopkins University Press, 3rd. ed. Baltimore, USA (1996).

David D. Awschalom and M. Flatt e, Nature 3, 153 (2007)

L. Esaki, J. Physique 45, C5 (1984).

R. Pérez- Álvarez, Propiedades de heteroestructuras semiconductoras cuánticas, Vol 1, pp. 41 (Revista: 100cias@uned, UNED, Madrid, 1984).

H. Sakaki, Solid State Communications 92, 119 (1994).

J. M. Luttinger and W Kohn, Phys. Rev. 97:4, 869-883 (1955).

L. Diago-Cisneros, H. Rodriguez-Coppola, R. Pérez Álvarez, and P. Pereyra, Phys. Scripta71,582 (2205)

D. A. Broido and L.J. Sham, Phys. Rev. B 58,165 (1985)

H. Shapiro, Paci c Journal of Mathematics 181:3, 323 (1997).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Nova Scientia