Influence of cooking methods on antioxidant activity and bioactive compounds of tomato (Solanum lycopersicum L.)

Jorge Gutiérrez Tlahque, Yair Olovaldo Santiago Sáenz, Alma Delia Hernández Fuentes, José Manuel Pinedo Espinoza, Guadalupe López Buenabad, César Uriel López Palestina


In order to evaluate the effect of three types of cooking (sautéed, boiled, and roasted) on content of the bioactive compounds, and antioxidant activity in tomato, four treatments were established: sautéed, boiled, roasted, and control (without application of some cooking method). Once the treatments were applied, the physiochemical properties such as total soluble solids (TSS), titratable acidity (TA), and pH were evaluated as well as the lycopene content, β-carotene, ascorbic acid, phenols and total flavonoids, and antioxidant activity in vitro by essays of 2-2-diphenil-1-picrylhydrazil (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazolino-6-sulfonic acid) (ABTS). All the cooking methods increased the TSS and reduced the acidity of the fruit. By roasting, a higher concentration of ascorbic acid (58.10%) was retained, as compared to the control. A significant increased (P ≤ 0.05) was observed in the concentration of carotenoids, and phenolic compounds in tomatoes due to the effect of the treatment sautéed, therefore a greater antioxidant activity. An inhibition of DPPH radicals was found of 17.92%, and an antioxidant activity expressed as Trolox equivalents of 25.97 µM per g of fresh weight, as a result of the ABTS test. The boiling treatment caused a lixiviation effect of the bioactive compounds in the cooking media; therefore a smaller concentration was found. Sautéed was a better cooking method for tomatoes to obtain a higher concentration of antioxidant compounds.


Solanum lycopersicum L.; thermal treatments; carotenoids; phenols; flavonoids


AOAC – Association of Official Analytical Chemists. 1995. Official Methods of Analysis.

Borguini, R. G. y Da Silva Torres, E. A. F. (2009). Tomatoes and tomato products as dietary sources of antioxidants. Food Reviews International, 25(4): 313–325.

Brand-Williams, W., Cuvelier, M. E. y Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28(1):25–30.

Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R. y Camp, J. Van. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry. 108(2): 649–656.

Cuastumal-Canacuan, H. G., Murillo-Valencia, B. L. y Santos-Ordóñez, E. L. (2016). Efectos de los tratamientos térmicos en la concentración de vitamina C y color superficial en tres frutas tropicales. Revista Lasallista de Investigación. 13(1): 2016–85.

Dewanto, V., Wu, X., Adom, K. K. y Liu, R. H. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Journal of Agricultural and Food Chemistry. 50: 3010–3014.

Di Paola-Naranjo, R. D., Otaiza, S., Saragusti, A. C., Baroni, V., Carranza, A. D. V., Peralta, I. E. Asis, R. (2016). Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chemistry. 206: 146–155.

Dürüst, N., Sümengen, D. y Dürüst, Y. (1997). Ascorbic acid and element contents of food of Trabzon (Turkey). Journal of Agricultural and Food Chemistry. 8561(96): 2085–2087.

Fish, W. W., Perkins-Veazie, P. y Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of food composition and analysis. 15(3): 309-317.

Gutiérrez-Tlahque, J., Aguirre-Mancilla, C. L., Raya-Pérez, J. C., Ramírez-Pimentel, J. G., Jiménez-Alvarado, R., y Hernández-Fuentes, A. D. (2018). Effect of climate conditions on total phenolic content and antioxidant activity of Jatropha dioica Cerv. var. dioica. Ciencia e Investigación Agraria. 45(1): 70-81.

Hwang, E. S. (2005). Tomato-based products and lycopene in the prevention of cancer: Bioavailability and antioxidant properties. Cancer prevention research. 10(2): 81-88.

Hof, K. H., De Boer, B. C., Tijburg, L. B., Lucius, B. R., Zijp, I., West, C. E., Hautvast, J.G., y Weststrate, J. A. (2000). Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. The Journal of nutrition. 130(5): 1189-1196.

Kavitha, P., Shivashankara, K. S., Rao, V. K., Sadashiva, A. T., Ravishankar, K. V. y Sathish, G. J. (2014). Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. Journal of the Science of Food and Agriculture. 94(5): 993–999.

López-Palestina, C., Aguirre-Mancilla, C., Raya-Pérez, J., Ramírez-Pimentel, J., Gutiérrez-Tlahque, J. y Hernández-Fuentes, A. (2018). The Effect of an Edible Coating with Tomato Oily Extract on the Physicochemical and Antioxidant Properties of Garambullo (Myrtillocactus geometrizans) Fruits. Agronomy. 8(11): 248.

Miglio, C. C., Chiavaro, E., Visconti, A., Fodliano, V., Pellegrini, N., Fogliano, V. y Pellegrini, N. (2008). Effects of Different Cooking Methods on Nutritional and Physiochemical Characteristics of Selected Vegetables. Journal of Agriculture and Food Chemistry. 56(1): 139–147.

Ordóñez-Santos, L. E., Portilla, M. A. O. y Rodríguez, D. X. R. (2013). Cinética de degradación térmica de vitamina C en frutos de guayaba (Psidium guajava L.). Revista Lasallista de Investigación. 10(2): 44–51.

Oroian, M. y Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International. 74: 10–36.

Pellegrini, N., Miglio, C., Del Rio, D., Salvatore, S., Serafini, M. y Brighenti, F. (2009). Effect of domestic cooking methods on the total antioxidant capacity of vegetables. International Journal of Food Sciences and Nutrition. 60(2): 12–22.

Ramírez-Anaya, J. D. P., Samaniego-Sánchez, C., Castañeda-Saucedo, M. C., Villalón-Mir, M. y De La Serrana, H. L. G. (2015). Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chemistry. 188: 430–438.

Ramírez-Anaya, J., Samaniego-Sánchez, C., Villalón-Mir, M. y López-García de la Serrana, H. (2010). Variation on the content of phytochemicals compounds in typical Mediterranean foods depending on the culinar. Ars Pharmaceutica. 51: 437–446.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. y Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. 26(98): 1231–1237.

Rodríguez-Arredondo, A., Maldonado-Garfias, C., Sosa-Morales, M. E. y Cerón-García, A. (2018). Evaluación de compuestos bioactivos y propiedades fisicoquímicas de cáscaras de tomate verde (Physalis spp.) bajo diferentes condiciones de procesamiento. Investigación y desarrollo en ciencia y tecnología de alimentos. 3: 205–209.

Rosales, M. A., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. del M., Blasco, B., Ríos, J. J. y Ruiz, J. M. (2011). The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture. 91(1): 152–162.

Salas-Pérez, L., González Fuentes, J. A., García Carrillo, M., Sifuentes-Ibarra, E., Parra-Terrazas, S. y Preciado-Rangel, P. (2016). Calidad biofísica y nutracéutica de frutos de tomate producido con sustratos orgánicos. Nova Scientia, 8(17), 310-325.

Singleton, V. L. y Rossi, J. A. (1965). Colorimetric of total phenolic whit phosphomolybdic-phosphotungstic acid regents. American Journal of Enology and Viticulture. 16(3): 144–158.

Stahl, W., Heinrich, U., Aust, O., Tronnier, H. y Sies, H. (2006). Lycopene-rich products and dietary photoprotection. Photochemical and Photobiological Sciences. 5(2): 238–242.

Vallverdú-Queralt, A., Regueiro, J., de Alvarenga, J. F. R., Torrado, X. y Lamuela-Raventos, R. M. (2015). Carotenoid profile of tomato sauces: Effect of cooking time and content of extra virgin olive oil. International Journal of Molecular Sciences. 16(5): 9588–9599.

Volden, J., Borge, G. I. A., Hansen, M., Wicklund, T. y Bengtsson, G. B. (2009). Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant-related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). LWT - Food Science and Technology. 42(1): 63–73.

Zhang, J., Chu, P. C., Chao, C. y Chen, J. (2011). Effect of three cooking methods on nutrient components and antioxidant capacities of bamboo shoot. J Zhejiang Univ-Sci B (Biomed y Biotechnol). 12(9):752–759.



  • There are currently no refbacks.

Copyright (c) 2019 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 11, issue 22, May – October 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 28th, 2019.