Towards the simplification of natural gas pipeline systems
PDF (Español (España))

Keywords

Investigación de operaciones
sistemas de gasoductos
optimización de redes
programación no convexa
preprocesamiento Operations research
natural gas pipeline systems
network optimization
nonconvex programming
preprocessing

How to Cite

Ríos Mercado, R. Z. (2014). Towards the simplification of natural gas pipeline systems. Nova Scientia, 4(8), 26–41. https://doi.org/10.21640/ns.v4i8.166

Abstract

Introduction: The problem of minimizing the fuel consumption incurred by compressor stations in steady-state natural gas transmission networks, which is one of the most relevant problems in the field, is addressed. In the real world, these type of instances are very large, in terms of the number of decision variables and the number of constraints, and very complex due to the presence of non-linearity and non-convexity in both the set of feasible solutions and the objective function.

Method: The contribution of this work is to present a study of the properties of gas pipeline networks, and exploit them to develop a technique that can be used lo reduce significantly problem dimension, without disrupting problem structure.

Results: Typical network configurations of different sizes are presented. The application of the proposed method considerably simplifies each instance by achieving relative reductions from 81 to 97%.

Conclusion: The immediate impact is that a relatively large problem can be simplified by this technique and then be solved with considerable smaller computational effort

https://doi.org/10.21640/ns.v4i8.166
PDF (Español (España))

References

H. Aalto (2008). Optimal Control of Natural Gas Pipeline Networks: A Real-Time, Model-Based, Receding Horizon Optimisation Approach. VDM Verlag, Saarbrücken, Alemania.

C. Borraz-Sánchez y D. Haugland (2009). A tree decomposition algorithm for minimizing fuel cost in gas transmission networks. En I. Kacem, editor, Proceedings of the 39th International Conference on Computers & Industrial Engineering (CIE 2009), pp. 244–249. IEEE, Julio. ISBN: 978-1-4244-4136-5.

C. Borraz-Sánchez y D. Haugland (2011). Minimizing fuel cost in gas transmission networks by dynamic programming and adaptive discretization. Computers & Industrial Engineering, 61(2):364–372.

C. Borraz-Sánchez y D. Haugland (2012). Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility. TOP. Aceptado, doi:10.1007/s11750-011-0210-z.

C. Borraz-Sánchez y R. Z. Ríos-Mercado (2005). A hybrid meta-heuristic approach for natural gas pipeline network optimization. En M. J. Blesa, C. Blum, A. Roli y M. Sampels (editores), Hybrid Metaheuristics, pp. 54-65, ISBN: 3-540-28535-0. Springer, Berlin, Alemania.

C. Borraz-Sánchez y R. Z. Ríos-Mercado. Improving the operation of pipeline systems on cyclic structures by tabu search. Computers & Chemical Engineering, 33(1):58–64, 2009.

R.G. Carter (1998). Pipeline optimization: Dynamic programming after 30 years. En Proceedings of the 30th PSIG Annual Meeting, Denver, EUA, Octubre.

P. Domschke, B. Geißler, O. Kolb, J. Lang, A. Martin y A. Morsi (2011). Combination of nonlinear and linear optimization of transient gas networks. INFORMS Journal on Computing, 23(4):605–617.

K. Ehrhardt y M. C. Steinbach (2005). Nonlinear optimization in gas networks. En H. G. Bock, E. Kostina, H. X. Phu y R. Rannacher, editores, Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin, Alemania.

S. Kim, R.Z. Ríos-Mercado y E.A. Boyd (2000). Heuristics for minimum cost steady-state gas transmission networks. En M. Laguna y J.L. González-Velarde, editores, Computing Tools for Modeling, Optimization, and Simulation, capítulo 11, pp. 203-213. Kluwer, Boston, EUA.

H.S. Lall y P.B. Percell (1990). A dynamic programming based gas pipeline optimizer. En A. Bensoussan y J.L. Lions, editores, Analysis and Optimization of Systems, volumen 144 de Lecture Notes in Control and Information Sciences, pp. 123-132. Springer-Verlag, Berlín, Alemania.

D. Mahlke, A. Martin y S. Moritz (2007). A simulated annealing algorithm for transient optimization in gas networks. Mathematical Methods of Operations Research, 66(1):99-115.

J. Mallinson, A.E. Fincham, S.P. Bull, J.S. Rollett y M.L. Wong (1993). Methods for optimizing gas transmission networks. Annals of Operations Research, 43(1-4):443-454.

P.B. Percell y M.J. Ryan (1987). Steady-state optimization of gas pipeline network operation. En Proceedings of the 19th PSIG Annual Meeting, Tulsa, EUA, Octubre.

R.Z. Ríos-Mercado (2002). Natural gas pipeline optimization. En P.M. Pardalos y M.G.C. Resende, editores, Handbook of Applied Optimization, capítulo 18.8.3, pp. 813-825. Oxford University Press, New York, EUA.

R.Z. Ríos-Mercado, S. Kim y E.A. Boyd (2006). Efficient operation of natural gas transmission systems: A network-based heuristic for cyclic structures. Computers & Operations Research, 33(8):2323-2351.

R.Z. Ríos-Mercado, S. Wu, L.R. Scott y E.A. Boyd (2002). A reduction technique for natural gas transmission network optimization problems. Annals of Operations Research, 117(1-4):217-234, 2002.

P.J. Wong y R.E. Larson (1968). Optimization of natural-gas pipeline systems via dynamic programming. IEEE Transactions on Automatic Control, AC-13(5):475-481.

S. Wu, R.Z. Ríos-Mercado, E.A. Boyd y L.R. Scott (2000). Model relaxations for the fuel cost minimization of steady-state gas pipeline networks. Mathematical and Computer Modelling, 31(2-3):197-220.

Y. Wu, K.K. Lai y Y.J. Liu (2007). Deterministic global optimization approach to steady-state distribution gas pipeline networks. Optimization and Engineering, 8(3):259-275.

Q. P. Zheng, S. Rebennack, N. A. Iliadis y P. M. Pardalos (2010). Optimization models in the natural gas industry. En S. Rebennack, P. M. Pardalos, M. V. F. Pereira y N. A. Iliadis, editores, Handbook of Power Systems I, Energy Systems, pp. 121–148. Springer-Verlag, Berlin, Alemania.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Nova Scientia