Botrytis cinerea Pers. in postharvest apple fruit, control with Candida oleophila Montrocher strains and/or synthetic fungicides

Víctor Manuel Guerrero Prieto, Juan Luis Jacobo Cuéllar, Rafael Ángel Parra Quezada, Marcos Iván Linares Marrufo, Damaris Leopoldina Ojeda Barrios, Ofelia Adriana Hernández Rodríguez, Loreto Robles Hernández, David Ignacio Berlanga Reyes, Iván Javier Cabanillas Mata


As an alternative control method, to improve control and to reduce synthetic fungicide use, three Candida oleophila strains and/or four commercial synthetic fungicides were used to control Botrytis cinerea damage on postharvest apple fruit. Synthetic commercial fungicides; Cyprodinil+Fludioxonil, Thiabendazole and Benomyl, allowed Candida oleophila strains colony growth when challenged to the pressure of these fungicides. Synthetic commercial fungicide Captan did not allow any Candida oleophila strains colony growth. Control of Botrytis cinerea expressed in % of damage and damage reduction, gave an average control of; 100% for Cyprodinil+Fludioxonil; Captan, 97.5%; Thiabendazole, 94.1% and Benomyl, 93.7% All Candida oleophila strains, individually, gave a 100% control. Thiabendazole and Benomyl improved their efficiency to control Botrytis cinerea when combined with Candida oleophila. Control of Botrytis cinerea damage on postharvest Golden Delicious apple fruit can be achieved up to 100% either with Candida oleophila strains individually and/or with Cyprodinil+Fludioxonil alone. The use of Candida oleophila as an alternative method to control Botrytis cinerea damage on postharvest apple fruit means a reduction of synthetic fungicide use, plus avoiding fungicide residues on the treated apple fruit and on the environment, thus reducing the risk for human health damage. 


Botrytis cinerea control; yeast-fungicide combination; postharvest apple fruit

Full Text:



Calvo Juan, Viviana Calvente, María de Orellano, Delia Benuzzi and Maria Sanz de Tosetti. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology 113:251-257.

Chand-Goyal, Tara and Robert A. Spotts. (1996). Postharvest Biological Control of Blue Mold of Apple and Brown Rot of Sweet Cherry by Natural Saprophytic Yeasts Alone or in Combination with Low Doses of Fungicides. Biological Control (6): 253–259.

Droby Samir, Michel Wisniewski, Dumitru Macarisin and Charles Wilson. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology (52):137-45.

Droby Samir, Michael Wisniewski, Neus Teixidó, Davide Spadaro and M. Haissam Jijakli. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology (122): 22–29.

Eshel Dani, Rafael Regev, Janeta Orenstein, Samir Droby and Shmuel Gan-Mor. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of Black Root Rot of carrot. Postharvest Biology and Technology (54): 48–52.

FAO. (2016). apple fruit world production. (8 de Agosto, 2018).

Feliziani Erica, Marilla Santini, Lucia Landi and Gianfranco Romanazzi. (2013). Pre- and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology (78): 133–138.

Fernández Jorge G, Martín A Fernández-Baldo, Gabriela Sansone, Viviana Calvente, Delia Benuzzi, Eloy Salinas, Julio Raba, María I Sanz. (2014). Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability. Journal of Coastal Life Medicine 2014; 2(7): 541-546.

Filonow A. B., H. S. Vishniac, J. A. Anderson, and W. J. Janisiewicz. (1996). Biological Control of Botrytis cinerea in Apple by Yeasts from Various Habitats and Their Putative Mechanisms of Antagonism. Biological Control 7, 212–220.

Guerrero-Prieto, Víctor, María Trevizo-Enríquez, Alfonso Gardea-Béjar, Cecilia Figueroa-Valenzuela, Alejandro Romo-Chacón, Ana Blanco-Pérez y Erick A. Curry. (2004). Identificación de levaduras epifitas obtenidas de manzana [Malus sylvestris (L.) Mill. var. doméstica (Borkh.) Mansf.] para control biológico poscosecha. Revista Mexicana de Fitopatología (22):223-230.

Guerrero-Prieto, Víctor, Ana Blanco-Pérez, César Guigón-López, Carlos Tamayo-Urbina, Javier Molina-Corral, David Berlanga-Reyes, Elizabeth Carvajal-Millán y Graciela Ávila- Quezada. (2011). Competencia por Nutrientes; Modo de Acción de Candida oleophila Contra Penicillium expansum y Botrytis cinerea. Revista Mexicana de Fitopatología 29:90-97.

Guerrero-Prieto, Víctor, David Berlanga-Reyes y Damaris Ojeda-Barrios. (2013). Biocontrol con levaduras de Penicillium expansum y Botrytis cinerea en manzana Golden Delicious. Tecnociencia Chihuahua 7(2): 75-80.

Guerrero Víctor, César Guigón, David Berlanga and Damaris Ojeda. (2014). Complete control of Penicillium expansum on apple fruit using a combination of antagonistic yeast Candida oleophila. Chilean Journal of Agricultural Research 74(4) october-december, 2014.

Guerrero-Prieto VM, DI Berlanga-Reyes, JL Jacobo-Cuéllar, C Guigón-López, DL Ojeda-Barrios, GD Ávila-Quezada, A Núñez-Barrios, OA Hernández-Rodríguez. (2017). Calcium content on apple fruit influences the severity of Penicillium expansum. PHYTON Revista Internacional de Botánica Experimental. International Journal of Experimental Botany. 86: 74-78

Lahlali Rachid, Sébastien Massart, Deborah De Clercq, M. Najib Serrhini, Piet Creemers and M. Haïssam Jijakli. (2009). Assessment of Pichia anomala (strain K) efficacy against blue mould of apples when applied pre- or post-harvest under laboratory conditions and in orchard trials. European Journal of Plant Pathology 123:37–45. DOI 10.1007/s10658-008-9337-7

Lima Giusseppe, Filippo De Curtis, Daniela Piedimonte, Anna Maria Spina and Vincenzo De Cicco. (2006). Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biology and Technology (40): 301–307.

Lima Giusseppe, Raffaello Castoria, Filippo De Curtis, Assunta Raiola, Alberto Ritieni and Vincenzo De Cicco. (2011). Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples. Postharvest Biology and Technology (60): 164–172.

Mari Marta, Alessandra Di Francesco and Paolo Bertolini. (2014). Control of fruit postharvest diseases: old issues and innovative approaches. Stewart Postharvest Review (1);1-4.

National Pesticide Information Center, 2018. Oregon State University (November 13, 2018).

Santos A., A. Sánchez and D. Marquina. (2004). Yeasts as biological agents to control Botrytis cinerea. Microbiological Research 159, 331—338.

Quaglia Mara, Luisa Ederli, Stefania Pasqualini and Antonio Zazzerini. (2011). Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. On apple fruit. Postharvest Biology and Technology (59):307–315.

Ramírez-Legarreta, Manuel and Juan Luis Jacobo-Cuéllar. (2002). Impacto Ambiental del Uso de Plaguicidas en Huertos de Manzano del Noroeste de Chihuahua, México. Revista Mexicana de Fitopatología, vol. 20, núm. 2, julio-diciembre, 2002, pp. 168-173.

Renping Li, Hongyin Zhang, Weimin Liu and Xiaodong Zheng. (2011). Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. International Journal of Food Microbiology (146): 151–156

Russell Phil. 2005. A century of fungicide evolution. Journal of Agricultural Science, (143): 11–25.

Sandoval-Flores Maria, Rafael Jiménez-Mejía, Gustavo Santoyo, Patricia Alva-Murillo, Joel López-Meza y Pedro Loeza-Lara. (2018). Compósitos de quitosano-ácidos grasos reducen la infección de Botrytis cinerea en fresa en poscosecha. Chitosan-fatty acids composite reduce Botrytis cinerea infection on postharvest strawberry. Nova Scientia. Nº 21, Vol. 10 (2).

Sastre, Bethzabeth, Víctor Guerrero y Alfonso Gardea. (1999). Daño mecánico poscosecha en huertos manzaneros de Chihuahua. Revista Iberoamericana Tecnología Poscosecha. Vol. 1(2), 178-185.

SIAP. (2017). (August 8, 2018).

Sowndhararajan K, S. Marimuthu and Sellamuthu Manian. (2013). Integrated control of blister blight disease in tea using the biocontrol agent Ochrobactrum anthropi strain BMO-111 with chemical fungicides. Journal of Applied Microbiology (114): 1491—1499.

Spotts Robert, Louis A. Cervantes, Timothy J. Facteau. (2002). Integrated control of brown rot of sweet cherry fruit with a preharvest fungicide, a postharvest yeast, modified atmosphere packaging, and cold storage temperature. Postharvest Biology and Technology (24): 251–257.

Statistical Analysis System, SAS. Version 6.12. Cary, NC USA.

Sui Yuan, Michael Wisniewski, Samir Droby, John Norelli and Jia Liu. (2016). Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat? Trends in Food Science & Technology (51): 34-40.

Williamson, Brian, Bettina Tudzynski, Paul Tudzynski and Jan A. L. van Kan. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology. 8(5), 561–580.

Wisniewski Michel, Samir Droby, John Norelli, Jia Liu and Leonardo Schena. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology (122): 3–10.

Yu Xiao, C. L., and Y. K. Kim. (2008). Postharvest fruit rots in apples caused by Botrytis cinerea, Phacidiopycnis washingtonensis, and Sphaeropsis pyriputrescens. Online. Plant Health Progress DOI: 10.1094/PHP-2008-0919-01-DG.

Yu Ting, Jishuang Chen, Rongle Chen, Bin Huang, Donghong Liu, Xiaodong Zheng. (2007). Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid. International Journal of Food Microbiology 116:339-345.



  • There are currently no refbacks.

Copyright (c) 2019 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 11, issue 22, May – October 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 28th, 2019.