Confidence and perceived control as antecedents of the acceptance of e-commerce: an empirical investigation in final consumers

Enrique Ismael Meléndez Ruiz, Demian Ábrego Almazán, José Melchor Medina Quintero

Abstract


Introduction: In the current business context, a business must position itself a most effective way before its customers, this is why companies of different types and sizes are integrating e-commerce into their business processes. But as any commercial activity is not free from inconveniences, which in some way can inhibit its use, therefore, from the point of view of technological acceptance this study intends to contribute with empirical evidence of variables associated with it, including the inclusion of perceived trust and control and a multi-group analysis to see in greater detail the possible influence of gender.

Method: The procedure consisted of a review of the specialized literature on technological acceptance, trust and perceived control in the use of the Internet as a means of purchase, to justify the hypotheses and design a questionnaire. The data were collected in the south-central area of the state of Tamaulipas, Mexico, through a sampling for convenience. 234 questionnaires were applied to individuals greater 18 years old. For its analysis, the statistical technique of partial least squares (PLS) was applied, in addition to a technique of modeling structural equations based on the variance that allows testing and validating the proposed model.

Results: Evidence indicates the relevance of purchasing behavior and its intention as a precedent for the adoption of electronic commerce. In addition, trust is the antecedent of the intention to use e-commerce and influences on the perceived utility, while perceived control positively influences both ease and intention of use. On the other hand, the multi-group analysis indicates the lack of significant differences in opinions by gender.

Discussion or Conclusion: Trust and perceived control are variables to be considered since they can have a relevant influence on the intensity of current use or use of e-commerce. However, results show the existence of areas of opportunity in business required for the creation or improvement of sale activities, products or services operations made through this technological medium.


Keywords


technological acceptance; trust; perceived control; electronic commerce

References


Brooks, Daniel R. & Deborah A. McLennan. (2002). The Nature of Diversity: An Evolutionary Voyage of Discovery. Chicago: University of Chicago Press.

Aldape, N. K., Abrego, A. D., & Medina, Q. J. (2016). Análisis de la percepción de uso de las redes sociales como herramienta de marketing en las MiPYMES de Tamaulipas, México. Revista Ibérica de Sistemas e Tecnologías de Informação, 18, 49-65.

Amini, M. T., Ahmadinejad, M., & Azizi, M. J. (2011). A doption of Internet Banking by Iranian Customer: An empirical investigation. The International Journal of Management Science and Information Technology, 1(1), 47–64.

AMIPCI (2015). Estudio Comercio Electrónico en México 2015. Retrieved November 1, 2016, de https:// amipci.org.mx/ estudios/ comercio_ electronico / Estudio_ de_Comercio_ Electronico_ AMIPCI_ 2015_ version_ publica.pdf.

Bashir, S., Anwar, S., Awan, Z., Qureshi, T. W., & Memon, A. B. (2018). A holistic understanding of the prospects of financial loss to enhance shopper's trust to search, recommend, speak positive and frequently visit an online shop. Journal of Retailing and Consumer Services, 42, 169-174. DOI: 10.1016/j.jretconser.2018.02.004.

Bautista, J. R., Rosenthal, S., Lin, T. T. C., & Theng, Y. L. (2018). Predictors and outcomes of nurses’ use of smartphones for work purposes. Computers in Human Behavior, 84, 360–374. DOI: 10.1016/j.chb.2018.03.008.

Chen, M., Lu, T., Chen, K., & Liu, C. (2011). A TAM-based study on senior citizens’ digital learning and user behavioral intention toward use of broadband network technology services provided via television. African Journal of Business Management, 5(16), 7099–7110. DOI: 10.5897/ AJBM10.1213.

Cheng, Y. (2012). Effects of quality antecedents on e‐learning acceptance. Internet Research, 22(3), 361–390. DOI: 10.1108/10662241211235699.

Cheng, Y. (2014). Roles of interactivity and usage experience in e-learning acceptance: a longitudinal study. International Journal of Web Information Systems, 10(1), 2–23. DOI: 10.1108/IJWIS-05-2013-0015.

Díaz, F., & Escobar, M. (2004). Estrategias empresariales ante el comercio electrónico. información comercial española, ICE: Revista de Economía, 813, 187–196.

Farooq, M. S., Salam, M., Jaafar, N., Fayolle, A., Ayupp, K., Radovic-Markovic, M., & Sajid, A. (2017). Acceptance and use of lecture capture system (LCS) in executive business studies: Extending UTAUT2. Interactive Technology and Smart Education, 14(4), 329–348. DOI: 10.1108/ITSE-06-2016-0015.

Felipe, C.M.; Roldán, J.L.; Leal-Rodríguez, A.L. (2016). An explanatory and predictive model for organizational agility. Journal of Business Research, 69 (10), 4624–4631. DOI: j.jbusres.2016.04.014.

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, (18), 39–50.

George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198–212. DOI: 10.1108/ 10662240410542634.

González, F. J. M., Rubio Lacoba, S., Chamorro Mera, A., & Correia Loureiro, S. M. (2015). Determinantes de la intención de uso de Facebook en el proceso de decisión de compra. Investigaciones Europeas de Direccion y Economía de la Empresa, 21(1), 26–34. DOI: 10.1016/j.iedee.2014.05.001

Grandón, E., Nasco, S., & Mykytyn, P. (2011). Comparing theories to explain e-commerce adoption. Journal of Business Research, (64), 292–298.

Hansen, J. M., Saridakis, G., & Benson, V. (2018). Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Computers in Human Behavior, 80, 197–206. DOI: 10.1016/ j.chb.2017.11.010.

Harrati, N., Bouchrika, I., & Mahfouf, Z. (2017). Investigating the uptake of educational systems by academics using the technology to performance chain model. Library Hi Tech, 35(4), 629–648. DOI: 10.1108/LHT-01-2017-0029.

Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2017). A Primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. New challenges to international marketing, 20 (1), 277–319. DOI: 10.1108/S1474-7979(2009)0000020014.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science, 43(1), 115-135. DOI: 10.1007/s11747-014-0403-8.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33 (3), 405–431. DOI: 10.1108/IMR-09-2014-0304.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2–20.

Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453. DOI: 10.1037/1082-989X.3.4.424.

Huh, H., Kim, T., & Law, R. (2009). A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels. International Journal of Hospitality Management, 28(1), 121–134. DOI: 10.1016/j.ijhm.2008.06.004.

Kim, M., Chung, N., & Lee, C. (2011). The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tourism Management, 32(2), 256-265.

Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present, and future. The Communications of the Association for Information Systems, 12(1), 752–780. DOI: 10.1037/0011816.

Matemba, E. D., & Li, G. (2018). Consumers’ willingness to adopt and use WeChat wallet: An empirical study in South Africa. Technology in Society, 53, 55–68. DOI: 10.1016/j.techsoc.2017.12.001.

Mora-Riapira, E. H., Vera-Colina, M. A., & Melgarejo-Molina, Z. A. (2015). Planificación estratégica y niveles de competitividad de las Mipymes del sector comercio en Bogotá. Estudios Gerenciales, 31(134), 79-87. DOI:10.1016/j.estger.2014.08.001.

Natarajan, T., Balasubramanian, S. A., & Kasilingam, D. L. (2018). The moderating role of device type and age of users on the intention to use mobile shopping applications. Technology in Society, 53, 79–90. DOI: 10.1016/j.techsoc.2018.01.003.

Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive approaches to user acceptance of Internet of things in a smart home environment. IEEE Internet of Things Journal, 4(6), 2342–2350. DOI: 10.1109/JIOT.2017.2750765.

Raza, S. A., Umer, A., Qazi, W., & Makhdoom, M. (2018). The effects of attitudinal, normative, and control beliefs on m-learning adoption among the students of higher education in Pakistan. Journal of Educational Computing Research, 56(4), 563–588. DOI: 10.1177/0735633117715941.

Ringle, C. M., Wende, S. y Becker, J. M. (2015). SmartPLS 3, Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.

Romero, C. L., de Amo, M. del C. A., & Borja, M. Á. G. (2011). Adopción de redes sociales virtuales: ampliación del modelo de aceptación tecnológica integrando confianza y riesgo percibido. Cuadernos de Economía y Dirección de la Empresa, 14(3), 194–205. DOI: 10.1016/j.cede.2010.12.003.

Ros, S., Hernández, R., Caminero, A., Robles, A., Barbero, I., Maciá, A., & Holgado, F. P. (2015). On the use of extended TAM to assess students’ acceptance and intent to use third-generation learning management systems. British Journal of Educational Technology, 46(6), 1250–1271. DOI: 10.1111/bjet.12199.

Sanz, S., Ruiz, C., & Pérez, I. (2009). Concepto, dimensiones y antecedentes de la confianza en los entornos virtuales. Teoría y Praxis, 6, 31–56.

Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multi-Group analysis in Partial Least Squares (PLS) path modeling: Alternative methods and empirical results. Advances in International Marketing, 22, 195-218.

Sfenrianto, S., Wijaya, T., & Wang, G. (2018). Assessing the buyer trust and satisfaction factors in the E-marketplace. Journal of Theoretical and Applied Electronic Commerce Research, 13(2), 43–57. DOI: 10.4067/S0718-18762018000200105.

Shin, D.-H., & Kim, W.-Y. (2008). Applying the Technology Acceptance Model and Flow Theory to Cyworld User Behavior: Implication of the Web2.0 User Acceptance. CyberPsychology & Behavior, 11(3), 378–382. DOI: 10.1089/ cpb.2007.0117.

Tavera, J., & Arias, J. (2012). Internet Móvil: Aceptación tecnológica para el cierre de la brecha digital en Colombia. Perfil de Coyuntura Económica, 19, 139–156.

Tavera, J., & Londoño, B. (2014). Factores determinantes de la aceptación tecnológica del e-commerce en paises emergentes. Revista Ciencias Estratégicas, 22(31), 101–119.

Tavera, J., Sanchéz, J., & Ballesteros, B. (2011). Aceptación del e-comerce en Colombia: un estudio para la ciudad de Medellín. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 19(2), 9–23.

Tong, C., Wong, A., & Lee, W. (2015). Barriers to software adoption. Journal of Management Research, 15(3), 179–194.

Varadarajan, P. R., & Yadav, M. S. (2002). Marketing strategy and the Internet: An organizing framework. Journal of the Academy of Marketing Science, 30(4), 296–312. DOI: 10.1177/009207002236907.

Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology, MIS Quarterly, 36(1), 157–178.

Villa, A., Ramirez, K., & Tavera, J. (2015). Antecedentes de la intención de uso de los sitios web de compras colectivas. Revista EIA, 12(24), 55–70. DOI: 10.14508/reia.2015.12.24.55-70.

Yong, L., Rivas, L., & Chaparro, J. (2010). Modelo de aceptación tecnológica (TAM): Un estudio de la influencia de la cultura nacional y del perfil del usuario en el uso de las TIC. Revista Innovar, 20(36), 187-203.




DOI: https://doi.org/10.21640/ns.v10i21.1611

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Nova Scientia

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.