Effect of the addition of organic acids on the bioaccumulation of Lead, Thallium and Vanadium in Chrysopogon zizanioides growing on contaminated soils from a landfill

César Augusto De la Cruz López, Sebastián Alberto Ramos Arcos, Sugey López Martínez

Abstract


Introduction: Phytoremediation offers an alternative for removal of contaminants that are soil-present. Chrysopogon zizanioides (Vetiver) is a phytoremediation plant that has provided favorable results in the removal of metals. However, trace elements of metal are retained in the soil without them being bioavailable to the species, knowing that the utilization of chelating agents such as acids that are utilized in this research, which in organic acids stand out, improve phytoremediation processes making retained-in-soil-and-plants metals bioavailable. The objective of this research was to evaluate the effect of organic acids regarding the bioavailability of heavy metals in Vetiver, a soil exposed to leachate of urban solid waste from Sanitary Landfill Environmental Promoting Company S.A.B de C.V

Method: C. zizanioides propagated from cuttings that were acclimatized before being placed in experimental units which contained the soil from the landfill. These cuttings were exposed to leachate for 40 days, to which were added organic acid solutions (citric acid and tartaric acid at 10 mM and 15 mM). Soil was characterized, pH was measured, Organic Matter, Texture based on NOM-021-SEMARNAT-2000 and Aguilera and Domínguez (1982). The analysis of the metals present in the root, leaf and soil samples was carried out by means of Optical Emission Spectrometry by Inductive Coupling Plasma (ICP-OES).

Results: An increase in the pH and organic matter of the soil was observed in the treatments in which organic acid solutions had been added, the treatment with 10 mM citric acid mobilized in the soil the greater amount of Lead, Thallium and Vanadium, in the same way T2 with 10 mM citric acid accumulated the most of the metals under study in the Vetiver plants, achieving a greater accumulation of Thallium and Vanadium in the leaves of the plant.

Discussion or Conclusion: The presence of organic acids in the soil where Vetiver grows had an effect with significant differences on the physicochemical properties of the soil, increasing the levels of pH and organic matter, thus favoring the absorption of metals towards the Vetiver plant. The T1 that corresponds to the treatment with citric acid 10 mM, was the one that obtained greater effectiveness during the mobilization of metals (Lead, Thallium and Vanadium). We identified toxic elements such as Vanadium present in the soil and the plant, it is the first time that it is mentioned that this species absorbs it and accumulates it at high concentrations of Vanadium in the roots, thus constituting a successful phytostabilization process in soils contaminated by this element.

Keywords


leachate; organic acids; Chrysopogon zizanioides; metals

References


Aguilera Herrera, N. (1989). Tratado de edafología de México. Laboratorio de Investigación de Edafología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México.

Andra, S., Datta, R., Sarkar, D., Makris, K., Mullens, C., Sahi, S., & Bach, S. (2009). Induction of leadbinding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)]. J Environ Qual. 38: 868–877.

Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical and bioanalytical chemistry, 388(4), 947-956

Augustynowicz, J., Tokarz, K., Baran, A., & Płachno, B. (2014) Phytoremediation of water polluted by Tl, Zn, Cd, and Pb with the use of macrophyte Callitriche cophocarpa. Arch Environ Contam Toxicol 66:572–581

Brown S, Chaney, R., Angle, J., Baker, A. (1994). Phytoremediation Potential of Thlaspi caerulescens and Bladder Campion for Zinc and Cadmium Contaminated Soil. J. Environ. Qual. UK. 23: 1151-1157.

Cahuich Flores, S. (2018). Potencial de absorción de metales en Cyperus laxus y Chrysopogon zizanioides plantas Fitorremediadoras. Tesis de Licenciatura en Ingeniería Ambiental. UJAT. Vhsa, Tabasco. México.

Chen, Y. Shen, Z. Li, X. (2004). The use of Vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565.

Cieśliński, G., Van Rees, K., Szmigielska, A., Krishnamurti, G., & Huang, P. (1998). Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and soil, 203(1), 109-117.

Colomer Mendoza, F.J. y Robles Martínez, F. (2011). Generación de lixiviados y biogás en los vertederos controlados. Revista Agrónomos No. 42. PP., 10-17

Cuauhtémoc, C. (2010). Efecto de la interacción hongo – Dodonaea viscosa L. Jacq en la fitorremediación de plomo en un sistema in vitro. Tesis para obtener el grado de Maestro en Biotecnología. Universidad Autónoma Metropolitana. México.

Elektorowicz, M., & Keropian, Z. (2015). Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings. International journal of phytoremediation, 17(6), 521-528.

Elzahabi, M., Yong, R. N. (2001). pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology, 60(1), 61-68.

Escolástico, C., Pérez Esteban, J. (2012). Aplicación de compuestos orgánicos en la recuperación de suelos contaminados con metales pesados. Enseñanza y divulgación de la química y la física. Pp. 189-197

Ghosh, M., Paul, J., Jana, A., De, A., & Mukherjee, A. (2015). Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecological Engineering, 74, 258-265.

Habashi, F. (2013). Thallium, Physical and Chemical Properties. In Encyclopedia of Metalloproteins.

Hernández, M. (2009). Estudio de la acumulación de plomo y cadmio por Asphodelus fistulosus L. y Brassica juncea L. para fitorremediar jales. Tesis para obtener el grado de Maestría en Biotecnología. Universidad Autónoma Metropolitana Iztapalapa. México.

Liu, D., Islam, E., Li, T., Yang, X., Jin, X., & Mahmood, Q. (2008). Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 153(1-2), 114-122.

Luis, I.O. (2004). TESIS “Métodos de separación para el análisis químico y el desarrollo tecnológico: determinación de trazas metálicas (Pt, Pd, Hg, Pb, Cr, Cu, As, Cd, Zn y Rh) contaminantes en el medio ambiente en los municipios de Zumpango, Nezahualcóyotl y Cuautitlán Izcalli por ICP-AES. UNAM, Cuautitlán Izcalli. México.

Maqueda Gálvez, A. P. (2003). Fitorremediación de suelos contaminados con metales pesados. Tesis Maestría. Biotecnología. Departamento de Química y Biología, Escuela de Ciencias, Universidad de las Américas Puebla

Margesin, R., & Schinner, F. (2005). Manual for soil analysis-monitoring and assessing soil bioremediation. Springer Science & Business Media. Pp. 115-118

Mehra, A., Farago, M. (1994). Metal Ions and Plant Nutri¬tion. In: M. E. FARAGO (ed.) Plants and the Chemical Ele¬ments. Biochemistry, Uptake, Tolerance and Toxity. VCH Verlagsgesellschaft, Weinheim, Germany.

Montiel Camas, V. (2016). Identificación de metales contaminantes en vetiver Expuesta a lixiviados de residuos sólidos urbanos de la Empresa PASA S.A.B. DE C.V. Tesis de Licenciatura en Ingeniería Ambiental. UJAT. Vhsa, Tabasco. México.

Montiel-Rozas, M. M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273-281.

Morales Hernández, S. C. (2016). Determinación de metales en Chrysopogon zizanioides expuesta a lixiviados de residuos sólidos urbanos de dos sitios de disposición final. Tesis de Licenciatura en Ingeniería Ambiental. Vhsa, Tabasco. México.

NMX-AA-003. (1980). Aguas residuales-Muestreo; Establece los lineamientos generales y recomendaciones para el muestreo de las descargas de aguas residuales. México.

Norma Oficial Mexicana 021. (2000). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaria de medio ambiente y recursos naturales (SEMARNAT). México.

Norma Oficial Mexicana 083. (2003). Especificaciones De Protección Ambiental Para La Selección Del Sitio, Diseño, Construcción, Operación, Monitoreo, Clausura Y Obras Complementarias De Un Sitio De Disposición Final De Residuos Sólidos Urbanos Y De Manejo Especial. Secretaria de medio ambiente y recursos naturales. (SEMARNAT). México.

Núñez, J. (2005). Bioacumulación de plomo en Amaranthus caudatus L. “Kiwicha” en condiciones de laboratorio. Tesis para optar el título de Biólogo. Universidad Nacional de Trujillo. Trujillo, Perú.

Onireti, O., Lin, C., & Qin, J. (2017). Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere, 170, 161-168.

Renou, S., Givaudan, J., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal Hazard Material. 150, 468-493.

Romeiro, S., Lagôa, A., Furlani P., de Abreu, M., & Erismann N. (2006). Lead uptake and tolerance of Ricinus communis L. Brazilian Journal Plant Physiology, 18(4): 483-489

Sosa-Olivier, J.A., Laines-Canepa, J.R., Enríquez-Murguía, J. F., Molina, F., Bautista-Martínez, L., Segura-García, A. E., Hernández-Alcudia, S. E. (2015). Evaluación de la toxicidad puntual en un sitio de disposición final de residuos municipales. Ingeniería, Revista Académica de la FI-UADY, 19-2, pp. 110-117, ISSN 1665-529-X.

Truong, P., & Thai Danh, L. (2015). El sistema vetiver para mejorar la calidad del agua: prevención y tratamiento de aguas y suelos contaminados. pp. 1

Truong, P.N., et al. (1995). Stiffgrass barrier with vetiver grass: a new approach to erosion and sediment control. In: Proceedings of the Downstream Effects of Land Use Conference, Chiang Rai, Thailand.

Volke Sepulveda, T. Velasco Trejo, J.A. De la Rosa, D.A. (2005). Suelos contaminados por metales y metaloides: muestreo y alternativas para su remediación. INE-SEMARNAT. México.

Wu, Q., Leung, J. Y., Huang, X., Yao, B., Yuan, X., Ma, J., & Guo, S. (2015). Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environmental Science and Pollution Research, 22(15), 11478-11487.




DOI: https://doi.org/10.21640/ns.v10i21.1582

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Nova Scientia

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.