Adsorption of neonicotinoids using fullerene – like structures: A DFT study

Epifanio Salazar García, Luz Palomino Asencio, Erwin García Hernández

Abstract


A theoretical study of the adsorption of Thiacloprid, Acetamiprid and Thiamethoxam with activated carbon was carried out. A fullerene-like structure was chosen to emulate the curvature in activated carbon. The PBE-D/DZVP level of theory was used to perform the analysis of the several interaction modes. Eight configurations were found. Four of them are observed in the concave side and the another four in the convex. The most stables modes are those were the adsorbates are lying-down on concavity generating three interactions sites between the neonicotinoids and adsorbent. From the energy adsorption, the affinity of neonicotinoides over activated carbon following the order: Acetamiprid > Thiametoxam > Thiacloprid.


Keywords


fullerene-like structures; neonicotinoids; activated carbon; adsorption; Density Functional Theory

References


Baccar R., Sarrà M., Bouzid J., Feki M., Blánquez P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 212: 310–317.

Becke A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7): 5648–5652.

Brillas E., Sirés I., Oturan M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109: 6570–6631.

Cam L. M., Khu L. V., Ha N. N. (2009). Theoretical study on the adsorption of phenol on activated carbon using density functional theory. Journal of Molecular Modeling, 19(10): 4395–4402.

Canadian Council of Ministers of the Environment (CCME), Canadian Water Quality Guidelines: Imidacloprid, Scientific Supporting Document, CCME, Winnipeg, 2007.

Chagnon M., Kreutzweiser D., Mitchell E. A. D., Morrissey C. A., Noome D. A., Van der Sluijs J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 22: 119–134.

Cortés–Arriagada D., Sanhueza L., Santander–Nelli M. (2013). Modeling the physisorption of bisphenol. A on graphene and graphene oxide. Journal of Molecular Modeling, 19: 3569– 3580.

Dell’Arciprete M. L., Soler J. M., Santos-Juanes L., Arques A., Mártire D. O., Furlong J. P., Gonzalez M. C. (2012). Reactivity of neonicotinoid insecticides with carbonate radicals. Water Research, 46: 3479–3489.

Dell’Arciprete M. L., Cobos C. J, Mártire D. O., Furlong J. P., Gonzalez M. C. (2011). Reaction kinetics and mechanisms of with radicals. New Journal of Chemistry, 35: 672–680.

Dirac P. A. M. (1930). Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26: 376–385.

Ditchfield R., Hehre W. J., Pople J. A. (1971). Self–Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54: 724–728.

Fermi E. (1927). Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Rendiconti della Accademia Nazionale deo Lincei, 64: 602–607.

García-Hernández E., Flores-Moreno R., Vázquez-Mayagoitia A., Vargas R., Garza J. (2017). Initial stage of the degradation of three common neonicotinoids: theoretical prediction of charge transfer sites. New Journal of Chemistry, 41: 965–974.

Godbout N., Salahub D. R., Andzelm J., Wimmer E. (1992). Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Canadian Journal of Chemistry, 70: 560–571.

Goulson D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50: 977–987.

Grimme S., Antony J., Ehrlich S., Krieg S. (2010). ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu''. Journal of Chemical Physics, 132: 154104.

Guerra C. J., López J. M., Figueredo S. F., Muñoz A. E. (2015). Estudio teórico de la reactividad química del carbón activado. Química Nova, 38(8): 1021– 1026.

Gun’ko V. M., Turov V. V., Zarko V. I., Goncharuk O. V., Nychiporuk Y. M., Kozynchenko O. P., Skubiszewska-Zieba J., Leboda R., Charmas B., Balakin D. Y., Ptushinskii Y. G., (2013). Interfacial behavior of polar, weakly polar, and nonpolar compounds bound to activated carbons. Journal of Colloid and Interface Science, 404: 140–149.

Gupta S., Gajbhiye V. T., Kalpana K., Agnihotri N. P. (2002). Leaching Behavior of Imidacloprid Formulations in Soil. Bulletin of Environmental Contamination and Toxicology, 68: 502–508.

Haith D. A. (2010). Ecological Risk Assessment of Pesticide Runoff from Grass Surfaces. Environmental Science and Technology, 44: 6496–6502.

Harris P. J. F., Liu Z., Suenag K. (2008). Imaging the atomic structure of activated carbon. Journal of Physics: Condensed Matter, 20: 362201 (5pp).

Hohenberg P. y Kohn W. (1964). Inhomogeneous Electron Gas. Physical Review, 136: B864–B871.

Iwasa T., Motoyama N., Ambrose J. T. y Roe R. (2004). Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23(5): 371–378.

Jeschke P. y Nauen R. (2008). Neonicotinoids-from zero to hero in insecticide chemistry. Pest Management Science, 64: 1084– 1098.

Kagabu S. (2011). Discovery of Imidacloprid and Further Developments from Strategic Molecular Designs. Journal of Agricultural and Food Chemistry, 59: 2887–2896.

Kimura-Kuroda J., Komuta Y., Kuroda Y., Hayashi M., Kawano H. (2012). Nicotine-Like Effects of the Neonicotinoid Insecticides Acetamiprid and Imidacloprid on Cerebellar Neurons from Neonatal Rats. PloS ONE, 7(2): e32432.

Kohn W. y Sham L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140: A1133–A1138.

Lu C., Warchol K. M., Callahan R. A. (2012). In situ replication of honey bee colony collapse disorder. Bulletin of Insectology, 65(1): 99–106.

Morrissey C. A., Mineau P., Devries J. H., Sanchez-Bayo F., Liess M., Cavallaro M. C., Liber K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74: 291–303.

Nidheesh P. V., Gandhimathi R. (2012). Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 299: 1–15.

Perdew J. P., Burke K., Ernzerhof M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77: 3865–3868.

Putra E. K., Pranowo R., Sunarso J., Indraswati N., Ismadji S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Research, 43: 2419–2430.

Schrödinger E. (1926). Quantisierung als Eigenwertproblem. Annalen der Physik, 384(4): 361–376.

Smith M. A., Foley H. C., Lobo R. F. (2004). A simple model describes the PDF of a non-graphitizing carbon. Carbon, 42: 2041–2048.

Stewart J. J. P., MOPAC2012. Stewart Computational Chemistry, Colorado Springs, 2012.

Terzyk A. P., Furmaniak S., Harris P. J. F., Gauden P. A., Wloch J., Kowalczyk P., Rychlicki G. (2007) How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments? Physical Chemistry Chemical Physics, 9: 5919–5927.

Thomas L. H. (1927). The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23: 542–548.

Thuyet D. Q., Jorgenson B. C., Wissel-Tyson C., Watanabe H., Young T. M. (2012). Wash off of imidacloprid and fipronil from turf and concrete surfaces using simulated rainfall. Science of the Total Environment, 414: 515–524.

Tolmachev A. M., Firsov D. A., Kuznetsova T. A., Anuchin K. M. (2009). DFT Modeling of the Adsorption of Benzene, Methanol, and Ethanol Molecules in Activated Carbon Nanopores. Protection of Metals and Physical Chemistry of Surfaces, 45(2): 163–168.

Tomizawa M. y Casida J. E. (2009). Neonicotinoid Insecticides:  Molecular Features Conferring Selectivity for Insect versus Mammalian Nicotinic Receptors. Accounts Chemical Research, 42(2): 260–269.

Tomizawa M. y Casida J. E. (2005). Neonicotinoid insecticide toxicology: Mechanisms of Selective Action. Annual Review of Pharmacology and Toxicology, 45 (1): 247–268.

Tomizawa M. y Casida J. E. (2003). Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, 48: 339–364.

Turabik M., Oturan N., Gözmen B., Oturan M. A. (2014). Efficient removal of insecticide “imidacloprid” from water by electrochemical advanced oxidation processes. Environmental Science and Pollution Research, 21: 8387– 8397.

U.S. Department of Agriculture, Forest Service, Imidacloprid: Human Health and Ecological Risk Assessment—Final Report, USDA, 2005.

Valiev M., Bylaska E. J., Govind N., Kowalski K., Straatsma T. P., van Dam H. J. J., Wang D., Nieplocha J., Apra E., Windus T. L., de Jong W. A. (2010). NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Computer Physics Communications, 181: 1477–1489.

Whitehorn P. R., O’Connor S., Wackers F. L., Goulson D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336: 351–352.




DOI: https://doi.org/10.21640/ns.v10i21.1572

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Nova Scientia

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 20, May – October 2018, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 25th, 2018.