Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle

Ozkar Hernández Montero, Andrés Fraguela Collar, Raúl Felipe Sosa


Introduction: A monodomain model of electrical activity for an isolated ventricle is formulated. This model is written as a reaction diffusion PDE coupled to an ODE, The Rogers-Mculloch model is used to represent the electrical activity through the cell membrane.                      

Method: We give a definition of weak and strong solution of the variational Cauchy problem associated to the monodomain model. A sequence of approximate solutions of Faedo-Galerkin type is proposed.

Results: It is shown that the sequence of approximate solutions converge to a weak solution according to the proposed definition. Finally, we have that this weak solution is also a strong solution.                       

Conclusion: The monodomain model of electrical activity in an isolated ventricle that is proposed has a weak solution in an appropriate sense. In addition, this weak solution is also a strong solution. 


monodomain; bidomain; reaction-diffusion; Faedo-Galerkin

Full Text:



Aliev, R.R., and Panfilov, A.V. (1996). A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7 (3), pp. 293-301.

Ambrosio, L., Colli-Franzone, P. and Savaré, G. (2000). On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model. Interface Free Bound. 2 (3), 231-266.

Barr, R.C. and Plonsey, R. (1984). Propagation of excitation in idealized anisotropic two-dimensional tissue. Biophys. J., vol. 45, pp. 1191-1202.

Berenfeld, O. and Abboud, S. (1996). Simulation of cardiac activity and the ECG using a heart model with a reaction-diffusion action potential. Med. Eng. Phys., vol. 18, no. 8, pp. 615-625.

Bernus, O., Wilders, R., Zemlin, C.W., Verschelde, H., Panfilov, A.V. (2002). A computationally efficient electrophysiological model of human ventricular cells. Am. J. Physiol. Heart Circ. Physiol., vol. 282, pp. H2296-H2308.

Bernus, O., van Eyck, B., Verschelde, H., Panfilov, A.V. (2002). Transition from ventricular fibrillation to ventricular tachycardia: A simulation study on the role of Ca^(2+)-channel blockers in human ventricular tissue. Phys. Med. Biol., vol. 47, pp. 4167-4179.

Bourgault, Y., Coudière, Y. and Pierre, Ch. (2009). Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Applications 10, pp. 458-482.

Brezis, Haim. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag New York.

Clerc, L. (1976). Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255 (2), 335-346.

Colli Franzone, P. and Savaré, G. (2002). Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In: A. Lorenzi, B. Ruf (Eds.), Evolution Equations, Semigroups and Functional Analysis: In memory of Brunello Terreni, vol. 50, Birkhauser, pp. 49–78.

Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, pp. 445-465.

Gulrajani, R.M. and Mailloux G.E. (1893). A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circ. Res., vol. 52, pp. 45-56.

Gulrajani, R.M. (1998). Bioelectricity and Biomagnetism. New York: Wiley.

Henriquez, C.S. (1993). Simulating the electrical behavior of cardiac tissue using the bidomain model. CRC Crit. Rev. Biomed. Eng., vol. 21, pp. 1-77.

Hren, R. and Horácek, B.M. (1997). Value of simulated body surface potential maps as templates in localizing sites of ectopic activation for radiofrequency ablation. Physiol. Meas., vol. 18, pp. 373-400.

Huiskamp, G. (1998). Simulation of depolarization in a membrane-equations based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng., vol. 45, no. 7, pp. 847-855, Jul.

Keener, J. and Sneyd, J. (1998). Mathematical Physiology, Springer-Verlag.

Leon, L.J. and Horácek, B.M. (1991). Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements. J. Electrocardiol., vol. 24, no. 1, pp. 1-15.

Lions, J. (1969). Résolution de quelques problèmes aux limites non-linéaires. Dunod.

Luo, C. and Rudy, Y. (1991). A model of the ventricular cardiac action potential. Circ. Res. 68, pp. 1501-1526.

Miller, W.T. and Geselowitz, D.B. (1978). Simulation studies of the electrocardiogram; I. The normal heart. Circ. Res., vol. 43, no. 2, pp. 301-315.

Miller, W.T. and Geselowitz, D.B. (1978). Simulation studies of the electrocardiogram; II. Ischemia and infarction. Circ. Res., vol. 43, no. 2, pp. 315-323, 1978.

Neu, J. and Krassowska, W. (1993). Homogenization of syncitial tissues. Crit. Rev. Biomed. Eng. 21, 137-199.

Panfilov, A. and Holden, A. (Eds.). (1997). Computational Biology of the Heart. John Wiley & Sons.

Pennacchio, M., Savare G., Colli-Franzone, P. (2005). Multiscale modelling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37, 1333-1370.

Potse, M., Dubé B., Richer, J., Vinet, A., Gulrajani, R.M. (2006). A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering, vol. 53, no. 12, pp. 2425-2435, december.

Raviart, P. and Thomas, J. (1992). Introduction à l’analyse numérique des équations aux dérivées partielles, Masson.

Rogers, J.M. and McCulloch, A.D. (1994). A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engr. 41, pp. 743-757.

Roth, B.J. (1991). Action potential propagation in a thick strand of cardiac muscle. Circ. Res., vol. 68, pp. 162-173.

Schmidt, O. (1969). Biological information processing using the concept of interpenetrating domains. In: Information Processing in the Nervous System, pp. 325-331 (Chapter 18).

Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A. (2006). Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering. Springer-Verlag Berlin Heidelberg.

Trudel, M.C., Dubé, B., Potse, M., Gulrajani, R.M., Leon, L.J. (2004). Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing. IEEE Trans. Biomed. Eng., vol. 51, no. 8, pp. 1319-1329, Aug.

Tung, L. (1978). A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA.

Veneroni, M. (2009). Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Applications, Volume 10, Issue 2, April 2009, Pages 849–868.

Vigmond, E.J., Aguel, F., Trayanova, N.A. (2002). Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng., vol. 49, no. 11, pp. 1260-1269, Nov.

DOI: https://doi.org/10.21640/ns.v10i21.1531


  • There are currently no refbacks.

Copyright (c) 2018 Nova Scientia


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.