Hemicellulose Removal in Curaua (Ananas erectifolius) Fibers for Polyester Composites

Beatriz S. Rodrígues, Rafael M. García, Rosineide M. Leão, Sandro C. Amico, Sandra María Luz

Abstract


Introduction: Alkaline treatments extract hemicellulose from the fibers, which can be reused in the manufacture of other materials, and the cellulosic portion can be applied as reinforcement in a composite. This way, all components of the fibers are utilized.

Method: In this work, curaua fibers (Ananas erectifolius) were treated with potassium hydroxide (KOH) to solubilize part of the hemicellulose and lignin, and the cellulose-rich fibers were used to manufacture composites with unsaturated polyester, which were characterized to investigate the effect of the treatment on their properties.

Results: The alkaline treatment removed large portions of hemicellulose and significantly degraded the crystalline cellulose and lignin, resulting in a small increase (2.4%) in overall crystallinity and with a negative impact on their thermal stability. SEM images showed defibrillation of the treated fiber and fibril separation, increasing roughness and surface contact area.

Conclusions: In all, although the alkaline treatment substantially modified the fibers and no significant changes were observed in the mechanical properties of the composite, the total removal of hemicellulose was found to affect the integrity of cellulose fibers making harder their application as reinforcement. However, the higher cellulose content could be useful for other applications.


Keywords


composites; polyester; natural fibers; curaua; alkaline treatment

Full Text:

PDF

References


Albinate, S R, Pacheco, E B A V, and Visconte, L L Y (2013). Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Química Nova 36(1), 114-122.

Almeida, J H S, Angrizani, C C, Amado, F D R, and Amico, S C (2012). Comportamento mecânico e térmico de compósitos de fibra de vidro sob diferentes temperaturas de cura. Revista Iberoamericana de Polímeros 13(1), 20-28, 2012.

AraAshland. (2007). Boletim Técnico Arazyn 14.0. São Paulo: Ara Química S/A.

Beltrami, L V R, Scienza, L C, and Zattera, A J. (2014). Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compósitos de matriz biodegradável. Polímeros 24(3), 388-394.

Brebu, M, and Vasile, C. (2010). Thermal degradation of lignin: a review. Cellulose Chemistry and Technology 44(9), 353-363.

Carvalho, K C C, Mulinari, D R, Voorwald, H J C, and Cioffi, M O H. (2010). Chemical modification effect on the mechanical properties of hips/coconut fiber composites. BioResources 5(2), 1143-1155.

Corrêa, A C (2010). Preparação de nanofibras de celulose a partir de fibras de curauá para desenvolvimento de nanocompósitos poliméricos com EVA. Thesis in Materials Science. Universidade Federal de São Carlos.

Elenga, R G, Djemia, P, Tingaud, D, Chauveau, T, Maniongui, G J, and Dirras, G. (2013). Effects of alkali treatment on the microstructure, composition, and properties of the Raffia textifis fiber. BioResources 8(2), 2934-2949.

Isiaka, O O, Oluyemi, O D, and Solomon, F. (2014). Effect of Chemical Treatment on the Mechanical Properties of Sisal Fibre Reinforced Polyester Composites. Leonardo Electronic Journal of Practices and Technologies 24, 1-12.

Lo, J, and Hoa, S V. (2009). Design, manufacturing and applications of composites: proceedings of the sixth joint canada-japan workshop on composites. DEStech Publications, Inc.

Marques, M D F V, Melo, R P, Araujo, R D S, Lunz, J D N, and Aguiar, V D O. (2015). Improvement of mechanical properties of natural fiber–polypropylene composites using successive alkaline treatments. Journal of Applied Polymer Science 132(12), 41710.

Merlini, C, Al-Qureshi, H A, Salmória, G V, Barra, G M O, and Pires, E N. (2012). Efeito do tratamento alcalino de fibras de juta no comportamento mecânico de compósitos de matriz epóxi. Polímeros 22(4), 339-344.

Morais, J P S, Rosa, M D F, and Marconcini, J M (2010). Procedimento para análise lignocelulósica. Campina Grande: Embrapa Algodão.

Obed, A, Paul, M W, Azzam, A, Wei, L, and Xiao, H Q (2016). A review of the applications of bio composites in the automotive industry. Polymer Composites 38(11), 2553-2569.

Oliveira, J M D. (2016). Obtenção e caracterização de compósitos biodegradáveis de Poliácido Láctico (PLA) reforçados com fibras de curauá. Dissertation in Integridade de Materiais da Engenharia. Universidade de Brasília.

Pickering, K L, Aruan, M G, and Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites: Part A 83, 98–112.

Rodrigues, J. D. S. (2008). Comportamento mecânico de material compósito de matriz poliéster reforçado por sistema híbrido fibras naturais e resíduos da indústria madeireira. Dissertation in Materials Science. Universidade Federal do Pará.

Roldi, O M (2017). Hemicelulose de fibras de curauá (Ananás Erectifolius): obtenção e caracterização de películas poliméricas. Dissertation in Integridade de Materiais da Engenharia. Universidade de Brasília.

Rosli, N A, Ishak, A, and Ibrahim, A. (2013). Isolation and characterization of cellulose nanocrystals from agave angustifolia fibre. BioResources 8, 1893-1908.

Rossa, L V (2012). Avaliação das propriedades de compósitos de Poli (Hidroxibutirato-co-valerato) reforçado com fibras de curauá. Dissertation in Materials Science. Universidade de Caxias do Sul.

Santos, B E, Moreno, C G, Barros, J P, Moura, D A, Fim, F C, Ries, A, Wellen, R M R, and Silva, L B. (2018). Effect of Alkaline and Hot Water Treatments on the Structure and Morphology of Piassava Fibers. Mat. Res., ahead of print Epub Feb 01, 2018.

Segal, L, Creely, J J, Martin, A E, and Conrad, C M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10), 786-794.

Sousa, V M Z D. (2016). Caracterização mecânica, térmica e morfológica de compósitos de Polihidroxibutirato (PHB) reforçados com fibras de curauá. Dissertation in Integridade de Materiais da Engenharia. Universidade de Brasília.

Souto, F, Calado, V, and Junior, N P. (2015). Fibras de carbono a partir de lignina: uma revisão da literatura. Revista Matéria 20(1), 100-114.

Tomczak, F. (2010). Estudos sobre a estrutura e propriedades de fibras de coco e curauá do Brasil. Thesis in Materials Science. Universidade Federal do Paraná.

Vishtal, A., and Retulainen, E. (2014). Boosting the extensibility potential of fibre networks: A review. BioResources 9(4), 7951-8001.




DOI: https://doi.org/10.21640/ns.v10i21.1509

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Nova Scientia

Scope

Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.