Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method

Rafael Romero Toledo, Víctor Ruiz Santoyo, Cristina D. Moncada Sánchez, Merced Martínes Rosales


This study reports the synthesis of mesoporous nano-fibrillar alumina prepared by hydrolysis-precipitation route from aqueous solution of aluminum sulfate analytical reagent (AR) compared to aluminum sulfate technical grade (TG) of low purity under similar conditions using ammonia as the precipitating agent. The phisicochemical properties of these samples was studied with the assistance of characterization techniques such as Thermogravimetric and differential thermal analysis (TG/DTGA–DTA), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR) spectroscopy, particles size and Transmission electron microscopy with energy-dispersive X-ray analysis (TEM/EDAX). The TG-DTA and XRD results show greater stability and a slightly greater crystallinity in Al2O3-TG sample than Al2O3-AR. N2 adsorption-desorption results show for both materials greatly surface area of 311 m2/g for Al2O3-TG and 272 m2/g for Al2O3-AR exhibiting characteristics of mesoporous materials. The FTIR results show a lower percentage of surface OH groups for Al2O3-TG showing a lower acidity due to the lower concentration of Al-OH species (AlIV). TEM measurements confirmed fibers size ranged from 20 to 100 nm for Al2O3-TG and 20-80 nm for Al2O3-AR. EDAX shows the presence of 0.20 % atomic of Mg as an impurity in Al2O3-TG, is attributed that this amount is sufficient to generate structural defects and decrease slightly acidity, likewise, extended the fibrillar chain of the alumina.


Mesoporous; Al2O3; hydrolysis/precipitation; low cost

Full Text:



Ancheyta, J., Rana, M. S., & Furimsky, E. (2005). Hydroprocessing of heavy petroleum feeds: Tutorial. Catalysis Today, 109(1), 3-15.

Benjing Xu, Yang Yang, Yanyan Xu, Baozhai Han, Youhe Wang, Xinmei Liu, Zifeng Yan. (2017). Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous and Mesoporous Materials 238, 84-89.

Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J. B., Berthet, P., & Tétot, R. (2009). Transition alumina phases induced by heat treatment of boehmite: an X-ray dif-fraction and infrared spectroscopy study. Journal of solid state chemistry, 182(5), 1171-1176.

D. Mishra, S. Anand, R.K. Panda, R.P. Das. (2002). Effect of anions during hydrothermal preparation of boehmites. Materials Letters 53. 133–137.

G. Del Angel, C. Guzma´n, A. Bonilla, G. Torres, J.M. Padilla. (2005). Lanthanum effect on the textural and structural properties of γ-Al2O3 obtained from Boehmite. Materials Let-ters 59, 499– 502.

Glorias-Garcia, F., Arriaga-Merced, J. M., Roa-Morales, G., Varela-Guerrero, V., Barrera-Díaz, C. E., & Bilyeu, B. (2014). Fast reduction of Cr (VI) from aqueous solutions using alumina. Journal of Industrial and Engineering Chemistry, 20(4), 2477-2483.

H.S. Potdar, Ki-Won Jun, Jong Wook Bae, Seung-Moon Kim, Yun-Jo Lee. (2007). Synthesis of nano-sized porous g-alumina powder via a precipitation/digestion route. Applied Ca-talysis A: General 321, 109–116.

Jan Barta, Milan Pospisil, Vaclav Cuba. (2014). Indirect synthesis of Al2O3 via radiation- or photochemical formation of its hydrated precursors. Materials Research Bulletin 49, 633–639.

Jun-Cheng, L., Lan, X., Feng, X., Zhan-Wen, W., & Fei, W. (2006). Effect of hydrothermal treatment on the acidity distribution of γ-Al2O3 support. Applied Surface Sci-ence, 253(2), 766-770.

K. Jiratova, M. Kraus. (1986). Effect of support properties on the catalytic activity of HDS catalysts, Appl. Catal. 27 21–29.

M.L. Guzman-Castillo, F. Hernandez Beltran, J.J. Fripiat, A. Rodriquez Hernandez, R. Garcıa de Leon, J. Navarrete Bolanos, A. Tobon Cervantes, X. Bokhimi. (2005). Physicochem-ical properties of aluminas obtained from different aluminum salts. Catalysis Today 107–108.

Mohammed A. Al-Daous, Abdullah A. Manda, Hideshi Hattori. (2012). Acid–base properties of γ-Al2O3 and MgO–Al2O3 supported gold nanoparticles. Journal of Molecular Catalysis A: Chemical 363– 364, 512– 520.

Qi Yang. (2011). Synthesis of γ-Al2O3 nanowires through a boehmite precursor route. Bull. Mater. Sci., Vol. 34, pp. 239–244.

Renuka, N. K., Shijina, A. V., & Praveen, A. K. (2012). Mesoporous γ-alumina nanoparticles: synthesis, characterization and dye removal efficiency. Materials letters, 82, 42-44.

Riad, M. (2007). Influence of magnesium and chromium oxides on the physicochemical properties of γ-alumina. Applied Catalysis A: General, 327(1), 13-21.

Rudina Bleta, Pierre Alphonse, Lisa Pin, Marie Gressier, Marie-Joëlle Menu. (2012). An effi-cient route to aqueous phase synthesis of nanocrystalline c-Al2O3 with high porosity: From stable boehmite colloids to large pore mesoporous alumina. Journal of Colloid and Interface Science 367, 120–128.

Sakashita, Y., Araki, Y., & Shimada, H. (2001). Effects of surface orientation of alumina supports on the catalytic functionality of molybdenum sulfide catalysts. Applied Cataly-sis A: General, 215(1), 101-110.

Sandeep Badoga, Rajesh V. Sharma, Ajay K. Dalai, John Adjaye. (2015). Synthesis and char-acterization of mesoporous aluminas with differentpore sizes: Application in NiMo supported catalyst for hydrotreatingof heavy gas oil. Applied Catalysis A: General 489, 86–97.

Sifontes, Á. B., Gutiérrez, B., Mónaco, A., Yanez, A., Díaz, Y., Méndez, F. J., & Brito, J. L. (2014). Preparation of functionalized porous nano-γ-Al2O3 powders employing coloph-ony extract. Biotechnology Reports, 4, 21-29.

Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.

Soodeh Sepehri, Mehran Rezaei, Gabriella Garbarino, Guido Busca. (2016). Facile synthesis of a mesoporous alumina and its application as a support of Ni-based autothermal reforming catalysts. International journal of hydrogen energy 41, 3456-3464.

Urretavizcaya, G., Cavalieri, A. L., Lopez, J. P., Sobrados, I., & Sanz, J. (1998). Thermal evo-lution of alumina prepared by the sol-gel technique. Journal of Materials Synthesis and Processing, 6(1), 1-7.

Wei Wu, Zhijian Wan, Mingming Zhu, Dongke Zhang. (2016). A facile route to aqueous phase synthesis of mesoporous alumina with controllable structural properties. Microporous and Mesoporous Materials 223, 203-212.

Wolverton, C., & Hass, K. C. (2000). Phase stability and structure of spinel-based transition aluminas. Physical Review B, 63(2), 024102.

Xu, B., Yang, Y., Xu, Y., Han, B., Wang, Y., Liu, X., & Yan, Z. (2017). Synthesis and char-acterization of mesoporous Si-modified alumina with high thermal stabil-ity. Microporous and Mesoporous Materials, 238, 84-89.

Y.S. Wu, J. Ma, F. Hu and M.C. Li. (2012). Synthesis and Characterization of Mesoporous Alumina via a Reverse Precipitation Method. J. Mater. Sci. Technol., 28(6), 572–576.

Zhang, L., Wu, Y., Zhang, L., Wang, Y., & Li, M. (2016). Synthesis and characterization of mesoporous alumina with high specific area via co-precipitation method. Vacuum, 133, 1-6.

Zhang, L., Wu, Y., Zhang, L., Wang, Y., & Li, M. (2016). Synthesis and characterization of mesoporous alumina with high specific area via co-precipitation method. Vacuum, 133, 1-6.

Zongbo Shi, Wenqian Jiao, Li Chen, Peng Wu, Yimeng Wang, Mingyuan He. (2016). Clean synthesis of hierarchically structured boehmite and γ-alumina with a flower-like mor-phology. Microporous and Mesoporous Materials 224, 253-261.

Z.Y.Nuru, L.Kotsedi, C.J.Arendse, D.Motaung, B.Mwakikunga, K.Roro, M.Maaza. (2015). Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP sys-tems. Vacuum. P. 115-120.

Wenzhan Yu, BinYang, Xiumin Chen, Wenlong Jiang, Qingchun Yu, Baoqiang Xu. (2012). Thermodynamic calculation and experimental investigation on the products of car-bothermal reduction of Al2O3 under vacuum. Vacuum. P. 2005-2009.

Wenbin Chen, Hong Nie, Dadong Li, Xiangyun Long, Jacob van Gestel, Francoise Maugé. (2016). Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction. Journal of Catalysis 344 (2016) 420–433.

Yuji Okuyama, Noriaki Kurita, Norihiko Fukatsu. (2006). Defect structure of alumina-rich nonstoichiometric magnesium aluminate spinel. Solid State Ionics 177 (2006) 59 – 64.

DOI: https://doi.org/10.21640/ns.v10i20.1217


  • There are currently no refbacks.

Copyright (c) 2018


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: http://nova_scientia.delasalle.edu.mx. Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.