Transport costs optimization under game theory approach. Case study

Fabiola Sánchez Galván, Claudia Lizette Garay Rondero, Consuelo Mora Castellanos, Damian Emilio Gibaja Romero, Horacio Bautista Santos


Game theory is a mathematical tool that allows modeling the cooperation between rational and intelligent agents. In this paper, game theory is presented as an application that proposes cooperation scenarios within the supply chain (SC) for maintaining the balance concerning logistics costs that are paid by customers of a company that distributing grocery products. From Shapley value and Capacitated Vehicle Routing Problem (CVRP) application, the balanced costs distribution among all customers were obtained. Variables such as demand, distance between all customer nodes, load capacity and vehicle performance are considered. The results obtained allowed to achieve savings closer than 40% in relation to company current distribution costs.


game theory; Shapley value; vehicle routing problem; cooperative games


Altman, E., Rachid El, A., & Abramov, V. (2004). Non-cooperative routing in loss networks. Performance Evaluation, 49(2002), 257–272.

Baldacci, R., Toth, P., & Vigo, D. (2010). Exact algorithms for routing problems under vehicle capacity constraints. Annuals of Operations Research, 175(1), 213–245.

Bell, M. G. . (2000). A game theory approach to measuring the performance reliability of transport networks. Transportation Research Part B: Methodological, 34(6), 533–545.

Bell, M. G. H. (2004). Games , Heuristics , and Risk Averseness in Vehicle Routing Problems, (March), 37–41.

Bertsimas, D. J., & Simchi-levi, D. (1996). A New Generation of Vehicle Routing Research : Robust Algorithms , Addressing Uncertainty, (August 2015).

Bistaffa, F., Farinelli, A., Chalkiadakis, G., & Ramchurn, S. D. (2017). A cooperative game-theoretic approach to the social ridesharing problem. Elsevier. Artificial Intelligence, 246, 86–117.

Boweson, D., Closs, D., Cooper, M. (2007). Administración y Logística en la cadena de suministros. México: Mc Graw Hill Interamericana.

Chopra, S; Meindl, P. (2008). Administración de la cadena de suministro: Estrategia, planeación y operación. México: Pearson Educación.

Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers and Industrial Engineering, 57(4), 1472–1483.

Fisk, C. S. (1984). Game theory and transportation systems modelling. Transportation Research Part B: Methodological, 18(4–5), 301–313.

Fotakis, D., Kontogiannis, S., & Koutsoupias, Elias; Mavronicolas, Marios; Spirakis, P. (2002). The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. Springer-Verlag Berlin Heidelberg, 14186, 123–134.

García, A. (2009). La estructura lógica de la teoría de juegos. Everyday Life and Games in the Civic Formation of Children. (English), 41(122), 3–27. Retrieved from〈=es&site=ehost-live

Garcia, A., Reaume, D., & Smith, R. L. (2000). Fictitious play for finding system optimal routings in dynamic traffic networks. Transportation Research Part B, 34, 147–156.

Göthe-Lundgren, M., Jörnsten, K., & Värbrand, P. (1996). On the nucleolus of the basic vehicle. Mathematical Programming, 72, 83–100.

Guajardo, M., & Rönnqvist, M. (2015). A review on cost allocation methods in collaborative transportation. International Transaction in Operational Research, 23, 371–392.

Hernández, R., Cárdenas, C., & Muñoz, D. (2017). Game theory applied to transportation systems in Smart Cities: analysis of evolutionary stable strategies in a generic car pooling system. International Journal on Interactive Design and Manufacturing (IJIDeM).

Hillier, Frederick S.; Lieberman, G. (2010). Introducción a la Investigación de Operaciones (Novena). México: Mc Graw Hill.

Hollander, Y., & Prashker, J. N. (2006). The applicability of non-cooperative game theory in transport analysis. Transportation, 481–496.

Kulkarni, A. J., & Tai, K. (2010). Probability Collectives : A multi-agent approach for solving combinatorial optimization problems. Applied Soft Computing Journal, 10(3), 759–771.

Laporte, G., Gendreau, M., Potvin, J.-Y., & Semet, F. (2000). Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research, 7, 285–300.

Mahdavi Mazdeh, M., & Karamouzian, A. (2014). Evaluating strategic issues in supply chain scheduling using game theory. International Journal of Production Research, 52(23), 7100–7113.

Restrepo Carvajal, C. A. (2009). Aproximación a la teoría de juegos. Revista Ciencias Estratégicas, 17(22), 157–175.

Ríos Mercado, R. (2015). Revista Electrónica Nova Scientia Mejorando la planificación de sistemas territoriales con optimización metaheurística Improving territory design planning through metaheuristic optimization. Nova Scientia. Revista de Investigación de La Universidad de La Salle Bajío, 7(3), 81–95.

Rocha Medina, Linda Bibiana; González La Rota, Elsa Cristina; Orjuela Castro, J. A. (2011). Una Revisión al Estado del Arte del Problema de Ruteo de Vehículos: Evolución Histórica Y Métodos De Solución. Ingeniería, 16(2), 35–55. Retrieved from

Rosenthal, E. C. (2017). A cooperative game approach to cost allocation in a rapid-transit network. Transportation Research Part B, 97, 64–77.

Salazar-Aguilar, M. Angélica; Ríos-Mercado, Roger Z.; González-Velarde, José L.; Molina, 33J. (2012). Multiobjective scatter search for a commercial territory design problem. Ann Oper Res, 199, 343–360.

Sánchez-Pérez, J. (n.d.). Juegos cooperativos y sus aplicaciones económicas. Perspectivas. Revista de Análisis de Economía, Comercio Y Negocios Internacionales., 59–75.

Sánchez Galván, F., Bautista Santos, H., Mora Castellanos, C., & Alcaraz Zuñiga, C. A. (2015). Rediseño de rutas en una PyME utilizando el problema de ruteo de vehículos con capacidad Universidad Popular Autónoma del Estado de Puebla. Puebla, Puebla.

Shapley, L. S. (1952). A value for n-person games. Clearing House for Federal Scientific and Technical Information, 295, 1–13.

Szeto, W. Y. (2013). Routing and scheduling hazardous material shipments : Nash game approach. Transportmetrica B: Transport Dynamics, 1(February 2015), 237–260.

Yu-qin, Feng; Jun-qiang, Leng; Zhong-Yu, Xie; Guie, Zhang; Yi, H. (2013). Route choice model considering generalized travel cost based on game theory.



  • There are currently no refbacks.

Copyright (c) 2017 Nova Scientia


Nova Scientia is a multidisciplinary, electronic publication that publishes biannually in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 10, issue 21, November 2018 – April 2019, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, e-mail: Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on November 23th, 2018.