Chemical composition and antibacterian effect in vitro of extracts of larrea tridentata, origanum vulgare, artemisa ludoviciana and ruta graveolens

Lucía Delgadillo Ruiz, Rómulo Bañuelos Valenzuela, Olivia Delgadillo Ruiz, Mónica Silva Vega, Perla Gallegos Flores


Introduction. Plant extracts have been shown to have antimicrobial properties related to certain chemical compounds such as thymol, carvacrol, limonene, linalool and terpinene. The objective of this study was to determine the concentration of these compounds in the extracts of Larrea tridentata, Origanum vulgare, Artemisa ludoviciana and Ruta graveolens; as well as to evaluate the antimicrobial effect in Escherichia coli, Acinetobacter baumanii, Pseudomona sp and Staphylococcus aureus.

Method. The extracts were obtained by simple distillation using ethyl alcohol as solvent, the chemical composition was evaluated by gas chromatography. The antimicrobial activity of each of the plant extracts was performed by well diffusion and disk diffusion methods.

Results. The bacteria showed different degrees of sensitivity to the extracts, S. aureus inhibition of growth with the extract of O. vulgare and R. graveolens, while the bacterium Pseudomona sp. showed inhibition with the extract of A. ludoviciana, L. tridentate and O. vulgare.

Discussion. The highest concentration of thymol and carvacrol was found in the extracts of O. vulgare and L. tridentata. The compound linalool was found in a higher proportion in O. vulgare and to a lesser extent in A. ludoviciana. Limonene was found in the extracts of O. vulgare and R. graveolens. Of the four plants evaluated, L. tridentata extract was better because it had the highest inhibition compared to the other extracts; and with an effect similar to the oils used as control. The disk diffusion technique allowed better observation of the inhibitory effects of the extracts and oils on each of the bacteria used in comparison to the well diffusion method.


Extracts; antimicrobial activity; bacteria, inhibition


AHFS (ED). Drug Information. American Society of Health System Pharmacists. 2005; pp 48-887.

Albado, Emilia P; Saez, Gloria F. y Grabiel, Sandra A. (2001). Composición química y activi-dad antibacteriana del aceite esencial del Origanum vulgare (orégano). Rev Med He-red. 12: 16-19.

Álvarez, María L.; Isaza, Gustavo M. y Echeverry, Harold L. (2005). Efecto Antibacteriano in vitro de Austroeupatorium inulaefolium H.B.K. (Salvia amarga) y Ludwigia polygo-noides H.B.K. (Clavo de laguna). Biosalud. 14: 46-55.

Aligiannis, N.; Kalpotzakis, E.; Mitaku, S., & Chinou I.B. (2001). Composition and antimi-crobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49:4168-4170.

Arango, A. M., Sánchez, J. B., & Galvis, L. B. (2004). Productos naturales con actividad an-timicótica. Rev Esp Quimioterap, 17(4), 325-331.

Benchaar, Chaouki y Greathead, Henry. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166–167: 338–355.

Blazer, V. S. (2002). Histopathological assessment of gonadal tissue in wild fishes. Fish Phy-siology and Biochemistry, 26(1), 85-101.

Brito-Júnior, Manoel, Nobre, Sergio A., Freitas, Juliana C., Camilo, Carla C., & Faria-e-Silva, André L. (2012). Antibacterial activity of a plant extract and its potential for disin-fecting gutta-percha cones. Acta Odontológica Latinoamericana, 25(1), 9-13.

Burt, Sara. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microb. 94: 223–253.

Burt, Sara, Zee, Ruurd., Koets, Ad., de Graaff, Anko., van Knapen, Frans., Gaastra, Wim., Haagsman, Henk and Veldhuizen, Edwin. 2007. Carvacrol Induces Heat Shock Pro-tein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7. Applied and Environmental Microbiology, 73 (14): 4484-4490.

Castro, Américo J.L.; Juárez, José R.E.; Ramos, Norma J.C.; Suárez, Silvia C.; Retuerto, Fer-nando P. y Gonzales, Sixto A.E. (2011). Structural elucidation of essential oil of Ruta graveolens L. Ruda, antioxidant activity and cytotoxicity bio-assay. Ciencia e Inves-tigación. 14(1): 25-28.

Cowan, Marjorie M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564–582.

De Feo, V., F. De Simone and F. Senatore. 2002. Potential allele chemicals from the essential oil of Ruta graveolens. Phytochemistry. 61, 573–578.

Di Pasqua, Rosangela, Hoskins, Nikki, Betts, Gail, & Mauriello, Gianluigi. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. Journal of agricultural and food chemistry, 54(7), 2745-2749.

Duarte, Marta C. T., Figueira, Glyn M., Sartoratto, Adilson, Rehder, Vera L. G., & Delarmeli-na, Camila. (2005). Anti-Candida activity of Brazilian medicinal plants. Journal of ethnopharmacology, 97(2), 305-311.

Dudareva, Natalia; Pichersky, Eran & Gershenzon, Jonathan. (2004). Biochemistry of plant volatiles. Plant Physiol. 135; 1893–1902.

Gill, A. O., & Holley, R. A. (2006). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International journal of food microbiology, 111(2), 170-174.

González, Rafael. P., Sánchez, Yurisnel. O., Rivera, Rodisnel. P., Mompié, Saray. A., & Gi-narte, Marta. L. H. (2017). 07-Relación de las propiedades físico-químicas con la ac-tividad farmacológica de Zuedania guidonia (guaguasí) Relationship of the physical-chemical properties with the pharmacological activity of Zuedania Guidonia (guagua-sí). MULTIMED Revista Médica Granma, 19(4) ): 76-87.

Helander, Ilkka M.; Alakomi, Hanna L; Latva, Kyösti K.; Mattila, Tiina S.; Pol, Irene; Smid, Eddy J.; Gorris, Leon G.M. and Wright, Atte von. (1998). Characterization of the ac-tion of selected essential oil components on Gram negative bacteria. J. Agric. Food Chem. 46: 3590–3595.

Kalemba D. and Kunicka A. (2003). Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10: 813–829.

Kordali, Saban; Cakir, Ahmet; Mavi, Ahmet; Kilic, Hamdullah and Yildirim, Ali. (2005). Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric Food Chem 53: 1408-1416.

Lopes-Lutz, Daíse, Alviano, Daniela S., Alviano, Celuta S., & Kolodziejczyk, Paul P. (2008). Screening of chemical composition, antimicrobial and antioxidant activities of Arte-misia essential oils. Phytochemistry, 69(8), 1732-1738.

López, Alvin J., García, Aura M., & Rojas, Jhon. J. (2005). Evaluación de dos metodologías para determinar la actividad antimicrobiana de plantas medicinales. Boletín Latinoa-mericano y del Caribe de plantas medicinales y aromáticas.

Martins, Silvia, Teixeira, José A. and I. Mussatto Solange. 2013. Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves. Appl. Biochem. Biotechnol. 171: 1227–1239.

Martínez, María J.; Betancourt, José B. y Alonso, Nancy G. (1996). Ausencia de actividad antimicrobiana de un extracto acuoso liofilizado de Áloe vera (sábila). Rev. Cubana Plant Med. 1(3):18-20. doi: 10.1007/s12010-013-0222-2

Matos Chamorro, R. A., Quispe Condori, S., Quito Vidal, M. R., & Beltrán Cárdenas, S. K. (2010). Evaluación de la capacidad antimicrobiana del aceite esencial de orégano (Origanum vulgare) microencapsuladas en β-ciclodextrina aplicados en cultivos mi-crobianos. Revista de Investigación en Ciencia y Tecnología de Alimentos, 1(1).

Mukherjee, P. K. (2002). Quality control of herbal drugs: an approach ro evaluation of botani-cals. New Delhi: Business Horizons Publication.

Nasar-Abbas, S. M., & Halkman, A. K. (2004). Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. International journal of food microbiology, 97(1), 63-69.

Pandey, Pinkee., Mehta, Archana., Hajra, Subhadip., John, Jinu., & Mehta, Pradeep. (2011). Antioxidant property, total Phenolic content and inhibition of α-amylase activity of Ruta graveolens L. leaves extract. J. Pharm. Res, 4, 1735-1737.

Pandey, Pinkee., Mehta, Archana, & Hajra, Subhadip. (2012). Antidiarrhoeal activity of et-hanolic extracts of Ruta graveolens leaves and stem. Asian J Pharm Clin Res, 5(4), 65-68.

Paparella, Antonello; Taccogna, Lorenzo; Aguzzi, Irene; Chaves, Clemencia L.; Serio, Annali-sa; Marsilio Fulvio and Suzzi, Giovanna. (2008). Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control. 19: 1174–1182.

Pathak, Sen, Multani, Asha S., Banerji, Pratip & Banerji, Prasanta. (2003). Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. International journal of on-cology, 23(4), 975-982.

Pesewu, George A., Cutler, Ronald. R., & Humber, David. P. (2008). Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. Journal of ethnopharmacology, 116(1), 102-111.

Ramírez, Alexander C., Isaza, Gustavo M. & Pérez, Jorge E. C. (2013). Vegetal species stu-died by their antimicrobial, immunomodulatory and hypoglicemic properties in cal-das-colombia, south america. Biosalud, 12(1), 59-82.

Rosas-Piñón, Yazmín, Mejía, Alicia, Díaz-Ruiz, Gloria, Aguilar, María I., Sánchez-Nieto, So-beida, & Rivero-Cruz, J. Fausto. (2012). Ethnobotanical survey and antibacterial ac-tivity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. Journal of ethnopharmacology, 141(3), 860-865.

Saldívar, Ricardo H. L. (2003). Estado actual del conocimiento sobre las propiedades biocidas de la gobernadora [Larrea tridentata (DC) Coville]. Revista Mexicana de Fitopatolo-gía, 21(2), 214-222.

Ultee, Annemieke; Kets, Edwin P.W.; Alberda, Mark; Hoekstra, Folkert A. and Smid, Eddy J. (2000 a). Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol. 174: 233–238.

Ultee, A.; Slump, R.A.; Steging, G. and Smid E.J. (2000 b). Antimicrobial activity of car-vacrol toward Bacillus cereus on rice. J. Food Prot. 63: 620–624.

Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S. and Xu, N. (2008). The antibacterial mechanism of car-vacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 47: 174–179.

Yun, Kyeong W.; Jeong, Hyung J. and Kim, Jong H. (2008). The influence of the growth season on the antimicrobial and antioxidative activity in Artemisia princeps var. orientalis. Industrial Crops and Products. 27: 69-74.



  • There are currently no refbacks.

Copyright (c) 2017 Nova Scientia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.